Imperial College London

A Methodology to Relate Black Carbon Particle Number and Mass Emissions from Various Combustion Sources

Roger Teoh¹, Marc E.J. Stettler¹, Arnab Majumdar¹ and Ulrich Schumann²

*Corresponding author: rt415@ic.ac.uk

¹Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK. ²Deutsches Zentrum für Luft- und Raumfahrt, Institute of Atmospheric Physics, 82234 Oberpfaffenhofen, Germany

1. Introduction

- Black Carbon (BC) Particle Number (PN) emissions from the transport sector influences health and climate, yet it's impact remain highly uncertain.
- <u>Health Effects</u>: Ultrafine particles have a higher probability of being deposited into the respiratory system, and translocated towards the circulatory system and internal organs.
- <u>Climate Effects</u>: BC PN emissions from aircraft acts as a condensation nuclei for contrail formation, where the initial contrail properties are strongly correlated to the number of emitted aircraft BC particle per kg of fuel burned (EI_n in kg⁻¹) (*Fig.1*) [1].

4. Model Validation

- Existing BC EI_n models for aviation emissions assumes that BC particle morphologies remain constant irrespective of engine thrust settings.
- Aims & Objectives:
 - 1. Develop a new model to estimate BC PN emissions from mass using the theory of fractal aggregates.
 - 2. Validate the new model using BC measurements from three different emission sources
 - 3. Perform an uncertainty and sensitivity analysis to understand the accuracy and uncertainty bounds of the outputs of the newly developed model.

Fig. 1: Changes in contrail properties versus BC El_n in a young contrail. These contrail properties are reported at a plume age of 1-second. (Source: [1])

2. Theory – Development of a new BC *N* or El_n Predictive Model

Nomenclature

- *m* Mass of one BC aggregates
- Number of primary particles in an aggregate

Fig. 2: Validation of the FA Model with data from an internal combustion engine & inverted burner

• For two different sets of k_a and D_{α} values, the difference in the FA model outputs (estimated *N*) is within ± 20% of the measured *N*. Hence, constant values of $k_a = 0.998$ and $D_{\alpha} = 1.069$ can be used when specific k_a and D_{α} data for a given operating condition is not available.

Aircraft Gas Turbine Engines at Ground and Cruise Conditions

For aircraft emissions, we assume $k_a = 1 \& D_{\alpha} = \frac{1}{2} D_{\text{fm}}$ [Recall: $n_{pp} = k_a (\frac{d_m}{d_{pp}})^{2D_{\alpha}}$ or $n_{pp} = (\frac{d_m}{d_{pp}})^{D_{fm}}$]

$a_{\rm m}$	Aggregate Mobility Diameter	$ a_{\rm pp} $	Primary Particle Diameter
$ ho_0$	BC Material density	$k_{\rm a} \& D_{\alpha}$	Scaling prefactor & projected area exponent
D_{fm}	Aggregate mass-mobility exponent	$k_{\text{TEM}} \& D_{\text{TEM}}$	TEM prefactor-exponent coefficient pairs
GMD	Geometric Mean Diameter	$n(d_{\rm m})$	No. of aggregates for a given mobility diameter range
GSD	Geometric Standard Deviation	M & N	Total mass and number of BC aggregates

 $n_{
m pp}$

- In a free molecular regime, $n_{\rm pp} = k_{\rm a} (\frac{d_{\rm m}}{d_{\rm pp}})^{2D_{\alpha}}$ or $n_{\rm pp} = (\frac{d_{\rm m}}{d_{\rm pp}})^{D_{fm}}$ [2],
 - where constant values of $k_a = 0.998$ and $D_{\alpha} = 1.069$ can be used for aggregates formed of polydisperse primary particles, irrespective of the state of sintering [3].
- Total mass of aggregates for a given Particle Size Distribution (PSD):

• Resolve the remaining integral (φ^{th} moment of a log-normal distribution) & rearrange for N:

$$N = \frac{M}{k_{\rm a}\rho_0(\frac{\pi}{6})(k_{\rm TEM})^{3-2D}\alpha \,{\rm GMD}\phi \exp(\frac{\phi^2 \ln({\rm GSD})^2}{2})}, \text{ where } \phi = 3D_{\rm TEM} + (1 - D_{\rm TEM})2D_{\alpha}.$$

- BC aggregate morphology and PSD, such as the GMD, GSD and D_{fm} are dependent on engine operating mode & combustion conditions.
- The new Fractal Aggregates (FA) model relates BC mass, number and PSD in one equation.

Fig. 3: FA Model validation with aircraft gas turbine engine data at (a) ground and (b) cruise conditions

• For ground validation (Fig. 3a), a systematic overestimation of EI_n is observed at higher thrust settings (data points with lower Kn) as BC aggregates are formed in the continuum regime.

5. Uncertainty & Sensitivity Analysis

- Due to the non-linearity of the FA model, the uncertainty of the estimated N or EI_n is asymmetrically distributed (-37%, +55%) at 1.96 σ (*Fig. 4a*).
- Sensitivity analysis (*Fig. 4b*) identified that the uncertainties in GSD contribute to the largest sensitivity in the FA model output, followed by inputs of *M*, *D*_{fm} and GMD.
- A prioritisation can be recommended for future research to measure these critical parameters more accurately to reduce the uncertainty bounds of the FA model outputs.

Fig. 4: (a) Uncertainty & (b) Sensitivity Analysis for the FA model outputs (Estimated N or El_n)

Summary & Future Work

- A new methodology to relate BC Particle Number and Mass emissions is developed based on the theory of fractal aggregates, and validated with three different BC emission sources.
- Large uncertainties remain; GMD, GSD, M & D_{fm} inputs are identified as important parameters.
- Future Work: Application of FA Model to estimate BC EI_n for Aviation Emissions
 - Aircraft Activity Dataset Ambient Atmospheric Conditions

References

- Kärcher, B. (2016) The importance of contrail ice formation for mitigating the climate impact of aviation. *Journal of Geophysical Research: Atmospheres.* 121 (7), 3497-3505.
 Sorensen, C.M., 2011. The mobility of fractal aggregates: a review. *Aerosol Science and Technology*, 45(7), pp.765-779
 Eggersdorfer et al. (2012) Aggregate morphology evolution by sintering: number and diameter of primary particles. *Journal of aerosol science*, 46, pp.7-19.
 Dastanpour, R. & Rogak, S. N. (2014) Observations of a correlation between primary particle and aggregate size for soot particles. *AST*. 48 (10), 1043-1049.
 Graves et al. (2015) Characterization of particulate matter morphology and volatility from a compression-ignition natural-gas direct-injection engine. *AST*, 49(8), pp.589-598.
- [6] Dastanpour et al. (2017) Variation of the optical properties of soot as a function of particle mass. Carbon, 124, pp.201-211.
- [7] Boies et al. (2015) Particle emission characteristics of a gas turbine with a double annular combustor. AST. 49 (9), 842-855.
- [8] Moore et al. (2017) Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature. 543 (7645), 411-415.
- [9] Saltelli et al. (2008) Global sensitivity analysis: the primer., John Wiley & Sons
- [10] Lobo et al. (2015) PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study. Atmospheric Environment, 104, pp.237-245.

3. Data & Methodology

- The FA Model is validated with data from (i) An internal combustion engine [5], (ii) An inverted burner [6], and (iii) Two aircraft gas turbine engines at ground and cruise conditions [7], [8].
- An uncertainty analysis for the FA model is performed using the Monte Carlo 1000-member ensembles, while a global sensitivity analysis is accomplished using the Sobol' Method [9].