

Sharif University of Technology Department of Mechanical Engineering Fuel, Combustion and Emission (FCE) Research Center

Investigation of Non-volatile Nanoparticle Emissions of Diesel-Natural Gas RCCI Combustion Engine

(RCCI: Reactivity-Controlled Combustion Ignition)

Vahid Hosseini, Hamid-Reza Abedi*

*Presenter (<u>h.abedi74@student.sharif.edu</u>)

23rd ETH-Conference on Combustion Generated Nanoparticles June 2019, ETH Zurich, Switzerland

Introduction

- Emission Control Strategies
- RCCI Combustion

Literature Survey

- NOx Emission
- PM, CO and HC Emissions

Methodology

- Experimental Setup
- Engine and Fuels
- Emission Measurements

- CFD Analysis by AVL FIRE[™]
- Test Procedure

Results

- Particle Number
- Particle Size
- Non-volatile Particle Fraction
- LDSA
- Summary and Conclusion
- Acknowledgements

Introduction: Emission Control Strategies

- The target of examining alternative combustion strategies (in this case low-temperature partially homogeneous mixture) is to reduce emissions (focusing on NOx, PM, and PN) while keeping the efficiency high enough.
- After-treatment systems are expensive and reduce the efficiency.
- The question is, how does RCCI combustion affect PM and PN emission of a dual-fuel CNG-diesel engine?

https://www.toxfree.com.au/australias-first-euro-6/

Introduction: RCCI Combustion

- Novel combustion strategy with two different fuels with opposite reactivities (i.e. autoignition properties)
- Extended combustion duration \rightarrow low temperature \rightarrow low NOx
- Retained benefits of CI combustion: efficiency and controllability
- Less heat loss → more efficiency
- Low soot amount

https://www.researchgate.net/figure/Illustration-of-RCCI-combustion-concept-PFI-and-DI-denote-port-fuel-injection-and-direct_fig3_317481348 [accessed 27 May, 2019]

Jing Li et al. ASME. J. Eng. Gas Turbines Power. 2016;138(9)

Literature Survey: NOx Emission

<u>RCCI</u> 4.0 bar BMEP/2000 rpm	Pre-DOC
Gas Temp. [°C]	269
UHC – FID [ppm]	2165
CO – NDIR [ppm]	1733
NOx – CLD [ppm]	26.4
NOx – FTIR [ppm]	30.9
NO/NO2 – FTIR [ppm]	22.0 / 8.9
BSHC – FID [g/kW-hr]	7.3
BSCO – NDIR [g/kW-hr]	11.8
BSNOx – CLD [g/kW-hr]	0.29
Combustion Eff. [%]	95.7%
Soot Concentration – AVL 415S [mg/m ³]	0.1
PM Concentration – Filters [mg/m ³]	2.2

Dempsey, A. et al., SAE Technical Paper 2014-01-1596

- No need to NOx after-treatment
- Less exhaust complexity
- Easy development of DPF and DOC

Benajes, J. et al., Energy Conversion and Management, 123 (2016), 381-391

Benajes, J. et al., SAE Int. J. Engines 10(5):2017

Literature Survey: PM, CO and HC Emissions

Methodology: Experimental Setup

Methodology: Engine and Fuels

Farymann 18W Engine		
Number of Cylinders	1	
Output Power	4.7 kW @ 3000 rpm	
Displacement Volume	290 ccm	
Bore × Stroke	82 × 55 mm	
Compression Ratio	16.5	
Maximum speed	3600 rpm	
DI Fuel	Diesel	
Premixed Fuel	Natural Gas (CNG) Iran has large reserves of natural gas in the middle east	

https://www.quora.com/What-are-Irans-naturalresources

The engine combustion chamber and fuel injector is not optimized for any emission level. The idea is to look for trends.

Methodology: Emission Measurement Devices

Nobutaka Kihara, Opacimeter MEXA-130S, Feature Article

Testo NanoMet3

- Thermo-diluted sampling → solid and nonvolatile particle measurement
- Diffusion size classifier mechanism
- PN, mean size, PM and LDSA of nonvolatile particles

MAHA MET 6.3

Total PM by opacimeter

Non – volatile Particle Fraction =

Solid PM calculated by NanoMet3

Total PM measured by MAHA MET

Methodology: CFD Analysis by AVL FIRE™

Methodology: Test Procedure

PEF = $m_{\text{premixed fuel}} \times LHV_{\text{premixed fuel}} + m_{DI \text{ fuel}} \times LHV_{DI \text{ fuel}}$

80

3.6

3.55

65

70

Port fuel Energy Fraction (PEF,%)

75

Results: Particle Number

62

premixed

to

more

59

60

61

Results: Particle Size

 Retarded injection → There is more diffusion flame and accumulated fuel → more agglomerated particles Higher PEF → particle agglomeration caused by diffusion flame is reduced and further particles are in the nucleation mode

Results: Non-volatile Particle Fraction

Results: LDSA

PN, PM or Particle Size?

23rd ETH-Conference on Combustion Generated Nanoparticles, Zurich, June 18th, 2019

Summary and Conclusion

- RCCI combustion strategy is an efficient solution for ultra-low NOx emission with no after-treatment.
- CO and unburned HC emissions are increased compared to CDC. So diesel oxidation after-treatment is required to meet standard emission levels.
- Switching from CDC to RCCI, PM is reduced. There are some other parameters to consider; composition, number and size.
- Non-volatile particle mass is low enough to meet strengthen emission levels. Traditional NOx-PM trade-off is not valid any more at RCCI combustion.
- Low PM/PN emission RCCI combustion requires high fraction of port fuel injection (more than 80% in this case). This could potentially lead to very low PM/PN to reduce after-treatment requirements.
- FCE research lab at Sharif University is considering use of modern production-type engine at RCCI combustion mode to meet Euro VI PM/PN limits.

Acknowledgements

- VERT association, Dr. Andreas Mayer, and Mr. Volker Hensel
- Tehran Air Quality Control Co. (AQCC)

Thanks for your attention

Vahid Hosseini, Hamid-Reza Abedi

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

E-mail: <u>h.abedi74@student.sharif.edu</u>