

The Need for a Periodic Inspection of Vehicle Emissions

H. Burtscher

Institute for Sensors and Electronics, Fachhochschule Nordwestschweiz

Change in black carbon concentration at the road side station Härkingen, Switzerland, from Hüglin, 2017

Kurinawan und Schmidt-Ott (2006): 5% of 'super polluters' are responsible for 43% of elemental carbon emissions

h *W* Fachhochschule Nordwestschweiz

Comparison of particle number, emitted during a NEDC cycle versus number concentration in low idle of 3 different diesel vehicles with cracked DPF or variable bypass (from Kadijk et al., 2017)

Cumulative contribution to fleet emission

Histogram of particle concentrations for the public bus measurements in Santiago di Chile (Reinoso, 2016).

Concentration [cm⁻³]

Construction engines:

Nauroy et al. (2017) measured emissions from more than 100 construction engines, equipped with particle filters. 22% exceeded the limit of 250'000#/cm³.

There is an urgend need to indentify these high polluters, PTI is an option therfore

Pass/Fail Criteria

Requirements:

- Has to be less strict than type approval testing
- Has to be low enough to detect high polluters
- Should be related to what can be acheived with state of the art technology
- Allow a fast and simple test

results from cycle test as done for type approval and low idle measurements.

buti %]

70

rel. fraction of cars in a particle emission range (blue) and cumulated average fleet emissions of cars (red). Calculated from data by Gloor, 2018.

Recent measurement by B. Gloor: 379 EURO 5b cars:

10% emissions <250'000 cause 97% emissions.

Reinoso (2016) for busses: The fleet average: 2.5x10⁵ cm⁻³.

160.70 61113510115

Limit 2.2x10⁵cm⁻³: average is reduced by a factor of 20,

Limit 2.2x10⁴cm⁻³: results in another factor of 2.5.

$\mathbf{n}|\mathcal{U}$ Fachhochschule Nordwestschweiz

1,9%

950,000 1.000,000 2,000,000

3.00,00

*.000,000

5.000,000

6,000,000

1,000,000

*.000,000

9,000,00 10:000:00

000,000

REJECTION RATE %

0,0%

100,000 150,000

50,00

200,000

Fachhochschule Nordwestschweiz

n

■ DPF good function ■DPF malfunction

Pass/fail criteria:

100'000 cm⁻³ for cars \geq 5b 250'000cm⁻³ for cars \leq 5a (equipped with a DPF), measured at low idle, from B. Gloor

Conclusions / outlook

- Fleet emissions are dominated by few high polluters
- Introducing PTI again is important
- Measuring at low idle is possible, allow a very fast and low cost test
- The limit should be in the range of 1 to $5 \times 10^5 \text{ cm}^{-3}$
- Gasoline engines also need to be considered
 - Mexico city: 30'000 cars tested, 2% high polluters (>10⁶ cm⁻³) cause 62% emissions
 - Kadijk et al: from 12 tested vehicles 2 with defect 3-way catalyst

Thank you for your attention ?? Questions ??