Detection of tar brown carbon with the single particle soot photometer (SP2)

Joel C. Corbin ^{1,2} and Martin Gysel-Beer ²

¹Metrology Research Centre, 1200 Montreal Road, Ottawa, Ontario, Canada ²Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Figure 1. Particle types observed

These examples were selected to be

representative of the trends shown in

Figures 2-4, with the exception of c),

which was rare in our data set.

a) Typical non-absorbing and

b) Typical soot BC particle.

c) Coated soot BC particle.

d) Typical evaporating but non-

incandescing particle.

e) Typical evaporating and

incandescing particle.

Symbols are defined in Table 1.

varying ordinate scales

Note the difference between the blue

lines showing t_i and the time of stable C(t) in c) and e). Note also the

therefore non-evaporating

particle. (Likely lubricating oil/sulfate mixture.)

by the SP2 in this work

SUMMARY

- · In addition to soot black carbon (soot BC), light-absorbing "brown carbon" (brC) plays an important role in the Earth's radiative budget. brC may originate from biomass combustion [1], heavy fuel oil combustion [2], or atmospheric chemistry [1].
- Brown carbon consists either of distinct, generally soluble molecules or the solid amorphous-carbon material known as "tar" [2].
- Tar brC is refractory and absorbs infrared light [2,3], and may therefore be detected as "equivalent BC" by light-absorption-based instruments [2].
- · The SP2 employs a continuous-wave 1064 nm laser to heat soot BC to incandescence at about 4000 K. Light scattering is measured simultaneously. The calibrated incandescence signal gives "rBC mass.
- This study explored the possibility that the SP2 is capable of detecting tar particles as well as soot BC. We found that tar particles may evaporate in the SP2, with or without incandescence Incandescing tar particles scatter more light at the time of incandescence than rBC. We recommend this light scattering signal as the best diagnostic to identify tar with the SP2. This represents the first possibility for a real-time diagnostic of tar brC particles

SP2

- A jet nozzle and sheath flow guide particles through the centre of a Gaussian (TEM 00 mode) continuous-wave Nd:YAG laser at 1064 nm.
- If a particle absorbs 1064 nm light efficiently, it may experience a net heat gain and evaporate, with or without incandescence depending on whether it is refractory to 3000 K. For tar, it is important to note that some materials may undergo a change in composition within the laser [4].
- Incandescence (350-880 nm radiation) and scattering (1064 nm) are measured in high enough time resolution that particle trajectories in the laser beam can be followed.
- · A four-element scattering detector with 2 positive and 2 negative sectors is used to infer the absolute position of particles within the laser beam

Figure 2. Schematic of the SP2.

MEASUREMENTS

Two test data sets were used as the basis of this work. Both of these data sets were presented in Ref. [2]. The two test data sets were obtained from a single marine engine operated on the same heavy fuel oil (HFO) at the same engine load, on the same day. The engine tuning parameters were varied such that either a pure-BC or a tar-rich aerosol was produced [2].

We define the relative importance of BC or tar in these samples using the Absorption Ångström exponent (AAE). The AAE is the negative slope of log-log plot of absorption versus wavelength. It is fundamentally related to the degree of graphitization of a carbonaceous material and is 1 for small mature soot BC particles but >1 for less graphitic material such as tar.

The estimated mass ratio of tar to soot BC was 3:1 in the tar-rich case and the AAE was about 2.0. The rBC/EC mass ratio was 0.18, and over half of the total light absorption was due to tar and not soot BC [2]. In the pure-BC case, the rBC/EC ratio was 0.97 and the AAE was close to 1.0. The mass of tar in the soot BC case was negligible.

RESULTS

Figure 2. Identification of evaporating but non-incandescing tar particles. The frequency distributions are highlighted by Gaussian fits, representing random error. Evaporating particles only occurred in the tar-rich case.

- Evaporating but non-incandescing particles were identified for the first time (Figure 2).
- 578 of 2.5 × 10⁵ particles partially evaporated

Figure 3. Evaporation trends of tar particles

Each red line corresponds to the lowest panel of Figure 1d. Each curve has been normalized to C(-3%), which is normally used for coatingthickness analysis [2.3].

Symbol	Meaning
t	Time spent by a particle in the SP2 laser beam
S(t)	SP2 scattering signal
C(t)	Scattering cross-section corresponding to $S(t)$
C(-3%)	Scattering cross-section at -3% of laser maximum as a particle enters the SP2 laser beam
I(t)	SP2 incandescence signal
to	Time just before onset of incandescence
ti	Time of maximum incandescence
R(-20%, 20%)	Ratio of $C(t)$ at two different t (Eq. 1)

Table 1. Definition of symbols

Evaporating, incandescing tar particles

Figure 4. Identification of evaporating and incandescing tar particles. The abscissa shows particle optical diameter just prior to incandescence (representing the apparent size of non-volatile material within each particle). The ordinate shows scattering cross-section just prior to incandescence (see Figure 1 for illustration) normalized to the maximum incandescence signal. As Ingus to include the include schedule and the Inspection of the data indicated that the joint probability is not exactly equal to zero in the soot-BC case due to coincidence.

REFERENCES [1] Laskin, A., et al. Chem. Rev. (2015) doi:10.1021/cr5006167

[2] Corbin, J. C. et al., npj Clim. Atmos. Sci. (2019)

1038/s4161 doi:10.1038/s41612-019-0069-5 [3] Corbin, J. C. and M. Gysel-Beer. Submitted to Atmos. Chem. Phys.

[4] Sedlacek, A. J. et al. Aerosol Sci. Technol. (2018)

doi:10.1080/02786826.2018.1531107 [5] Gao et al. Aerosol Sci. Technol (2007).doi:10.1080/02786820601118398

ACKNOWLEDGEMENTS. The authors thank Marco Zanatta, all coauthors of Ref. 3. and the rest of the WOOSHI team for their contributions during the measurements

FUNDING. ERC Grant "BLACARAT", Swiss National Science Foundation, German Science Foundation, Natural Resources Canada.

