

A compact and mobile optical particle counting sensor based on continuous wave laser-induced incandescence

Matteo Kammerer^{1,2}; Fabian Purkl¹ ¹Robert Bosch GmbH, ²University of Stuttgart

Motivation

Development of an optical particle sensor based on **continuous wave laser-induced incandescence** (CW-LII)

Investigation of nanoparticle properties, including number concentration & particle diameter

Measurement Setup

Data analysis

Mobile use through a compact sensor setup for an application in varying measurement environments

Working Principle

Laser-induced incandescence ^[1]

- Heating of nanoparticles to temperatures above 3000 K due to absorption of optical energy emitted by a laser
- Heated particles emit incandescent light, which is captured by a detector (e.g. photomultiplier tube)
- Most LII systems rely on bulky (nanosecond) pulsed, high-powered Nd:YAG lasers with a typical continuous wave equivalent optical output power of 100 W

Our approach

- Use of a continuous wave laser diode
- Focusing of laser light to reach sufficiently high optical power densities

- Filtering and smoothing of detected voltage signal
- d³- dependency of emitted LII signal gives indication for primary particle sizes
- Signal pulse width gives indication about particle speed

Experimental Results

Exemplary LII signal

Histograms of

Extraction of the particle number concentration from the amount of detected LII peaks with knowledge about the laser beam properties & fluidic particle behavior

Recent sensor setup

Conclusion

- Continuous wave laser diode in the near-infrared spectral region:
 - $\lambda = 830 \, \mathrm{nm}, P = 250 \, \mathrm{mW}$
- > Power density in focal spot with $d_{\text{Spot}} \approx 8 \,\mu\text{m}$: ~300 kW/cm²
- Collection of LII signal with a confocal setup using a sensitive silicon photomultiplier
- Functionality of compact CW-LII sensor concept successfully shown
- First comparison of signal peak distribution to reference measurements shows possibility of particle sizing

Further work

- Determination of detection limit
- Improved data analysis
- Verification of LII models

Reference:

[1] Michelsen H.A. et al.: Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications Progress in Energy and Combustion Science 51 (2015) 2–48.

Contact Info: Matteo Kammerer, Robert Bosch GmbH matteo.kammerer@de.bosch.com

500