Impact of composition & morphology
on soot optical properties
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Motivation

Soot optical properties are estimated by climate models using the Mie theory for spheres with a constant refractive index (RI) [1], neglecting the realistic soot composition and

structure that vary between different combustion sources. This impedes the accurate estimation

of the environmental impact of soot. Here, the Rayleigh-Debye-Gans (RDG)

theory is revised using robust RI [2] and power laws [3] to estimate soot light absorption and scattering accounting for its detailed composition and agglomerate morphology.
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Evolution of soot morphology (microcopy images), mobility diameter, d.,, C/H
and bulk density, p, during combustion in a premixed ethylene flame [6].
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estimated as a function of d,,, accounting for the evolving soot composition [2].
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Soot mass absorption cross-section (MAC) estimated by RDG theory accounting for its evolving
composition (lines) is compared to laser induced incandescence data from premixed ethylene
[8; circles] and methane flames [9; triangles, 10; inverse triangles] at A = 532 and 1064 nm.

Light scattering from soot nanoparticle agglomerates [6]
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Evolution of mass, m, of soot spheres (solid line) or agglomerates (broken line) with primary particle diameter, The differential light scattering cross-section, C,, of soot agglomerates (broken line) or spheres (solid line)
d, = 9-50 nm (shaded area) and p = 1.8 g/cm® estimated as a function of their dy, is compared to data from premixed with d,,, =200 nm estimated by RDG or Mie theory as a function of scattering angle, 6, is compared to light
ethylene flames [6; squares], diesel car [11; circles] or [12; triangles]. scattering measurements in premixed ethylene flames [6; symbols] at A = 405 nm.
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