

The PEMs4Nano project Measuring engine emissions below 23 nm

23rd ETH-Conference on Combustion Generated Nanoparticles Zurich, Switzerland

Philipp Kreutziger

Contact details Project Coordinator HORIBA Prof. Marcus Rieker Marcus.Rieker@Horiba.com www.horiba.com

Project Manager Uniresearch BV Dr. Willem van Dorp <u>W.vanDorp@Uniresearch.com</u> www.uniresearch.com

www.pems4nano.eu

Content

PEMs 4Nano

- Project Outline
- Particle Number (PN) & Particulate Matter (PM)
- Objectives
- Technology
 - Optimization Steps of PEMS (OBS)
 - PCRF Calibration
- Procedures
 - PN 10nm PEMS Measurement Results
- o Outlook
- Conclusion

Project Outline

Project full title: Call: Budget / Funding: Type of project: Project runtime: Portable Nano-Particle Emission Measurement System H2020-GV02-2016 Technologies for low emission light duty powertrains 3.6 M€ / 3.4 M€

Research & Innovation Action

1 October 2016 – 30 September 2019

Contact details

Project Coordinator HORIBA Prof. Marcus Rieker <u>Marcus.Rieker@Horiba.com</u> <u>www.horiba.com</u> Project Manager Uniresearch BV Dr. Willem van Dorp <u>W.vanDorp@Uniresearch.com</u> <u>www.uniresearch.com</u>

Particle Number (PN) & PM

Small

Diameter (µ m)

Large

- 1µm particle weighs 10⁶ times more than one 10nm particle 0 \rightarrow PM limits do not represent amount of nanoparticles \rightarrow PN limit was introduced Euro 5b
- 23nm lower-limit was chosen for technical reasons \bigcirc
- \rightarrow reduction to 10nm currently under discussion 0

Legislation	PN23 Limit	PM Limit
LDV Euro 6c, 6d	6x10 ¹¹ #/km	4,5 mg/km
HDV Euro VI	6x10 ¹¹ #/kWh	10 mg/kWh
NRMM Stage V	1x10 ¹² #/kWh	15 mg/kWh

+ PN23 RDE limits

Objectives

F PEMs 4Nano

Objectives

Technology

Demonstrate and evaluate the application and measurement technology in the development process

Understanding

Fundamental understanding of the particle formation, composition, size distribution and transport and the impact on the measurement procedure + demonstrate usability of model

Procedures

Robust and reliable measurement procedures for particles down to 10 nm and verified under real driving conditions

Optimization of CPC and CS (PEMS)

- CPC integrated into Horiba OBS-ONE PN optimized for 10 nm PEMS measurement
- PEMS CPC calibrated with 350°C conditioned flame soot aerosol, optimized for at least 50% detection efficiency at 10 nm

Solid particle penetration (CS)

- 10-15% improvement in solid particle penetration
- 65-75% solid particle(silver) penetration at 10 nm size
- Meets 60% penetration even at 8 nm.

> CPC and Catalytic Stripper have been optimized according to initial set targets

•

CPC and System efficiency

set target

Results: Calibrated solid particle counting system for PEMS use

- CPC for PEMS has been calibrated to at least 50 % detection efficiency at 10 nm
- \circ This leads to a system efficiency of > 20 % at 10nm with spark generated soot
- > The focus on further investigation is to increase system efficiency of the PEMS

Calibration of SPCS and OBS

PCRF/C0-factor evaluation and comparison

• PCRF at 23nm; 30nm; 50nm and 100nm between SPCS and OBS compares very well

> Further optimization of PEMS necessary to increase counting efficiency at 15nm

Results WLTC SPCS

Distance [km]	23,236	
Time [s]	1800	
PN23 [#/km]	1,18E+10	
PN10 [#/km]	1,35E+10	
PN23 vs PN 10	14,36%	

• Sub-23nm particles are generated at engine start and acceleration phases

Results WLTC SPCS & PEMS

1.0 L TGDI equipped with GPF

- Tests performed with following configuration
 - PEMS 10 & 23 with Y-Split at Tailpipe
 - SPCS 10 & 23 at CVS-Tunnel

Average (3 Tests)		PN (#/Km)
Lab System	SPCS PN23	1,2E+10
Data	SPCS PN10	1,4E+10
Correlation SPCS 10 vs SPCS 23		15%
OBS System	OBS PN23	8,8E+09
Data	OBS PN10	1,1E+10
Correlation OBS PN 10 vs OBS PN 23		21%
Correlation SPCS 10 vs OBS PN 10		22%
Correlation SPCS 23 vs OBS PN 23		26%

PN increase in sub-23nm regime between 15-22 % on average

SPCS 10 nm PEMS PN 10 nm

Results RDE PEMS

Three valid RDE tests have been performed

• Configuration: PEMS 10nm & 23nm with **Y-Split at Tailpipe**

PN increase in sub-23nm regime between 23% to 26% which compares well to 21% in average WLTC cycle (PEMS device only)

Slide 12

Outlook: PEMS Development

- > D50 increase from 9.6nm to 7.9nm achieved
- > Additional optimization steps considered regarding particle penetration

Conclusion

- Two systems (SPCS & OBS) have been developed for sub-23nm measurements
 - Sub-components have been optimized according to initial set targets
- Sub-23nm SPCS (PN10) can be applied and handled like an established PN23 measurement system
- Determination for existing robust and reliable laboratory and PEMS devices for sub-23nm under evaluation
 - Initial results show good comparability over wide range of particle sizes
 - Both PEMS devices (10nm & 23nm) measure within uncertainty range
 - \circ Ambitious Target of ± 20 % for SPCS/PEMS correlation in some tests achieved
- Further improvements were identified and are implemented
- Full evaluation and comparison of the equipment is ongoing

End of presentation

Slide 14

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 724145