Characterization of aerosol released from the combustion of nanoparticle-containing materials

Woranan Netkueakul^{1,2}, Tobias Hammer^{1,2}, Ari Setyan^{1,2}, Jing Wang^{1,2} ¹Institute of Environmental Engineering, ETH Zürich, Switzerland, ²Laboratory for Advanced Analytical Technologies, Empa, Switzerland Contact: Woranan.Netkueakul@empa.ch, Tobias.Hammer@empa.ch

Quantum dots

& Pigments

Potential risk: inhalation

> Since the studies focusing on characterization of the emissions from the combustion of nanoparticle-containing composites are still scarce and cover only limited types of nanoparticles, this study investigated the characterization of aerosol emissions from the combustion of different

nanoparticle-containing composites.

 \succ Nanofillers used in this study were graphene nanoplatelet (GNP), SiO₂, Ag nanowire and quantum dots.

1.00E+04

1.00E+02

1.00E+0

1.00E+

Without Catalytic Strippe

Methodology

Characterization of particle size combusted aerosol particles

Results

Particle number concentrations

Particle size distributions

- \succ Particle size distributions were analyzed on-line using
- Scanning mobility particle sizer (**SMPS**, sampling interval 2 minutes per sample) and
- Aerodynamic particle sizer (**APS**, sampling interval 20 s per sample).
- > Nanometer aerosol sampler (**NAS**) was employed to collect the particles for SEM/EDX analysis.

Characterization of volatile organic compounds (VOCs) from the combustion

- Two adsorbents: Carboxen and Tenax were used to collect emissions from the combustion with the flow rate of 100 mL/min.
- \succ GC/MS equipped with thermal desorption unit was employed to analyze the VOCs from the collected emissions.

Conclusions

- > The implementation of the catalytic stripper did not have an effect on particle concentration.
- \succ Adding GNP led to lower concentration of particle emissions, whereas particle size distributions were not influenced. > Adding GNP resulted in a reduction of total emitted concentrations of VOCs. \succ The main chemical families found included alkanes, aromatics, polycyclic aromatic hydrocarbons (PAHs) and benzofurans.

soot particles

APS

With Catalytic Strippe

Epoxv/0.5%GNP

Outlook

- \succ Further experiments will be performed using SiO₂, Ag nanowire and quantum dots as fillers in different polymer matrices including polyamide-6, polylactic acid and polyurethane. > In vitro toxicity effects of the combusted products of these composites will be determined via air-liquid interface exposure to lung cells.

Acknowledgement

The study is supported by the SNSF project 169207 "Interaction of graphene related materials and abraded graphene related materials reinforced nanocomposites with 3D lung cell models".

▏╶╻╻╏╽

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Professor Dr. Jing Wang Chair of Air Quality and Particle Technology lfU

Institute of **Environmental Engineering**

Materials Science and Technology