

Comparison of different soot generators: Towards a standard reference material for aerosol absorption

Jorge Saturno¹, Andreas Nowak¹, Thomas Müller², Baseerat Romshoo², Joel Corbin³, Gregory J. Smallwood³, Paul Green⁴, Krzysztof Ciupek⁴, Konstantina Vasilatou⁵, Michaela Ess⁵, François Gaie-Levrel⁶, Kostas Eleftheriadis⁷, Maria Gini⁷, Martin Irwin^{8*}, Martin Gysel-Beer⁸, Volker Ebert¹, Paul Quincey⁴

reference methods for use as BC source to generate **fresh-like soot** aerosol particles with the properties listed below:

EMPIR Black

PARTICLE DIAMETER

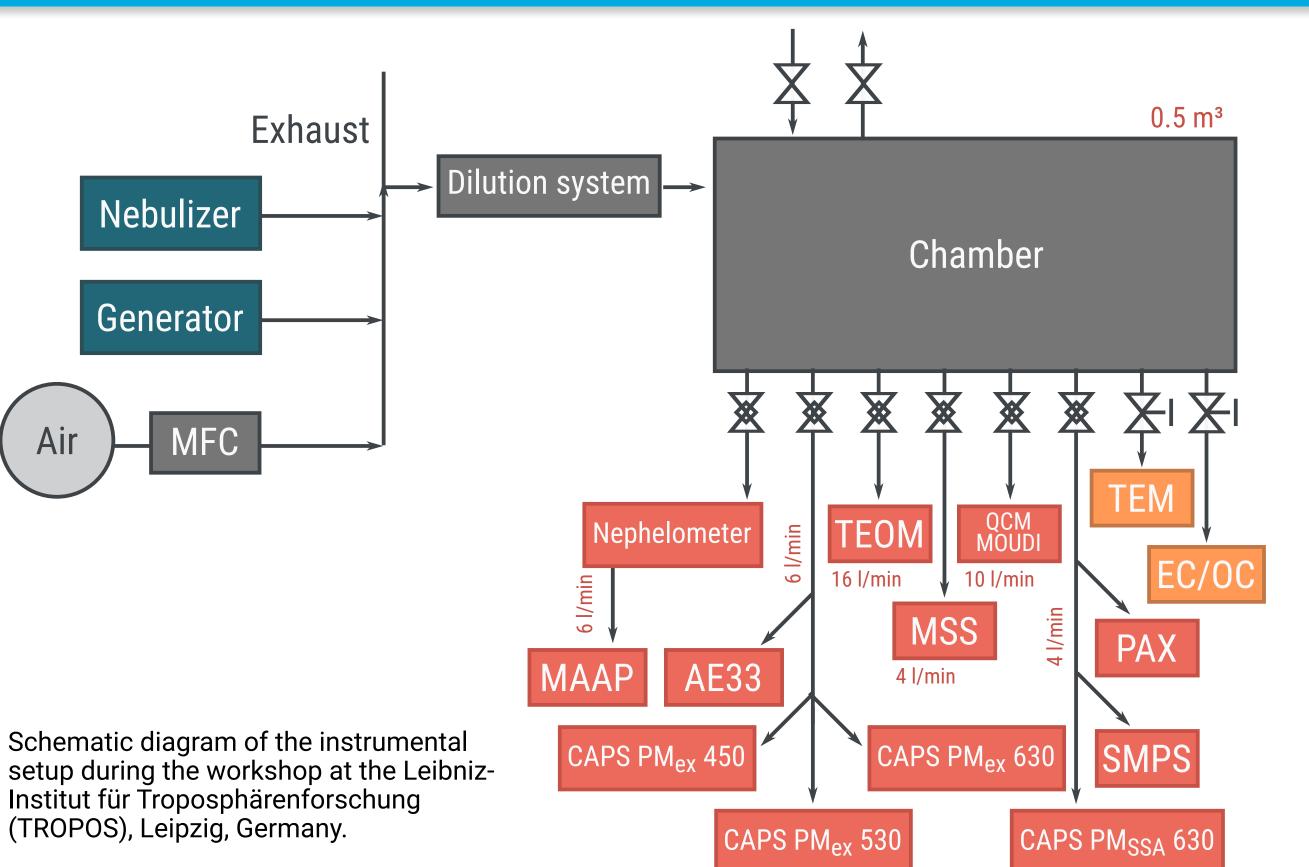
50 - 100 nm Here reported as volume mean (mobility-)diameter (VMD), expected to be larger than particle number mean (mobility-)diameter.

ABSORPTION ANGSTRÖM EXPONENT

Here reported as the result from a log-log fit applied to absorption at three wavelengths: 450, 530, and 630 nm.

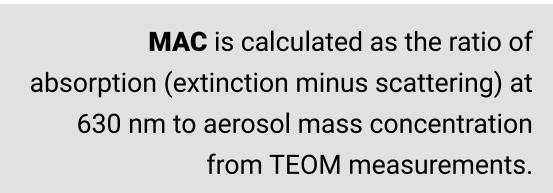
SINGLE SCATTERING ALBEDO

0.05 - 0.20 Here reported at 870 nm. SSA₅₅₀



mini-CAST 5303C Fuel-lean combustion.

Miniature inverted soot generator Propane flow rate from 60 to 110 sccm. Air flow rate from 7.5 to 9.5 slpm.

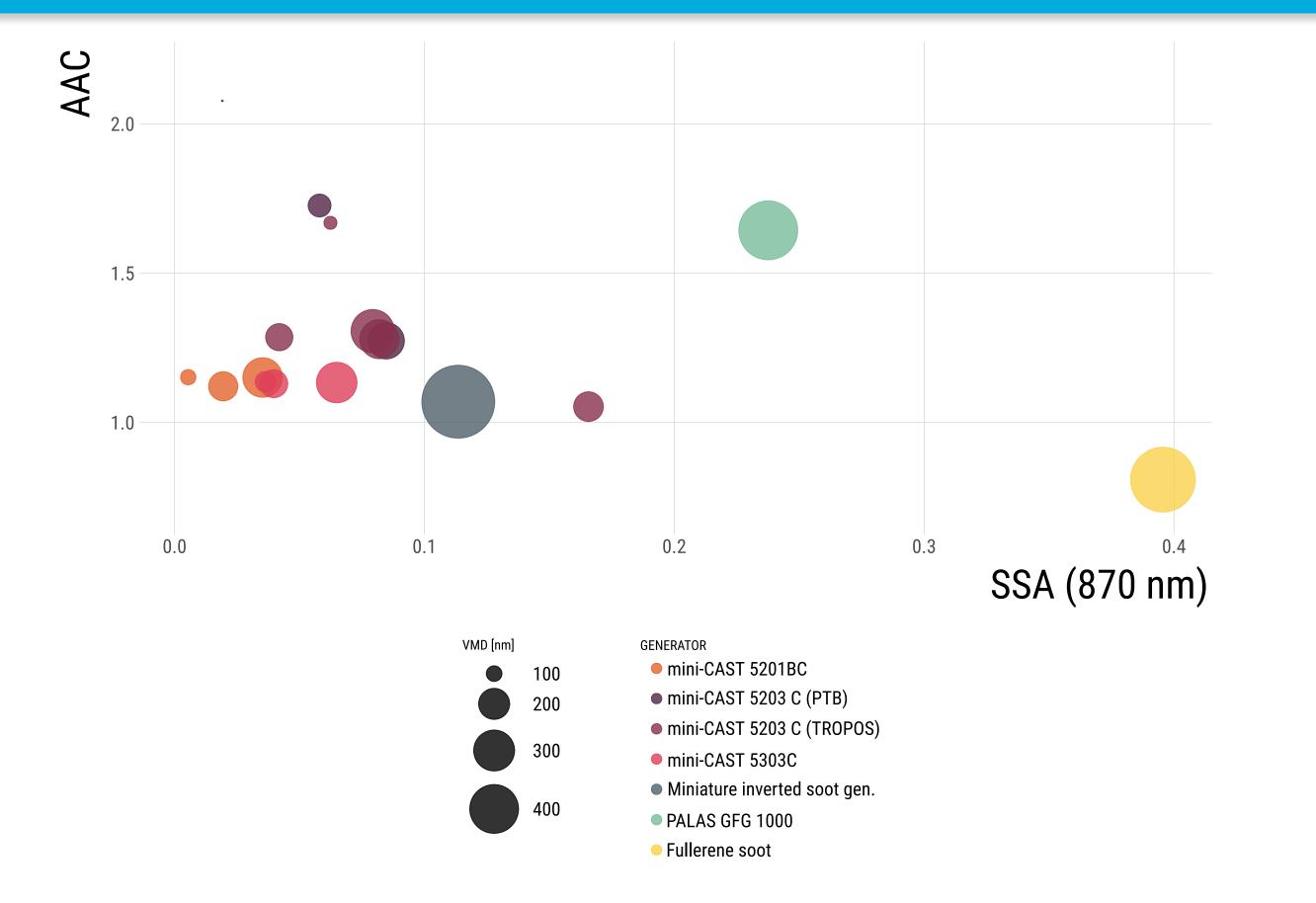

PALAS GFG 1000 **SPARK-BASED** FasmaTech spark generator Fullerene soot **ATOMIZED AEROSOL** Colloidal graphite

EXPERIMENTAL SETUP

OPTICAL PROPERTIES

ID	Generator	VMD [nm]	VMD SD	SSA870	SSA870 SD	AAC	AAC SD	MAC630 [m²/g]
exp1	mini-CAST 5201BC	173	13	0.04	0.01	1.15	0.06	4.20
exp2	mini-CAST 5201BC	124	5	0.02	0.01	1.12	0.05	3.74
ехр3	mini-CAST 5201BC	82	3	0.01	0.03	1.15	0.11	5.68
exp4	mini-CAST 5203C (PTB)	156	2	0.08	0.09	1.27	1.41	NA
exp5	mini-CAST 5203C (PTB)	68	4	0.02	0.02	2.08	0.04	2.19
exp6	mini-CAST 5203C (PTB)	102	4	0.06	0.03	1.73	0.05	NA
exp7	mini-CAST 5203C (TROPOS)	170	5	0.08	0.01	1.28	0.04	5.58
exp8	mini-CAST 5203C (TROPOS)	116	3	0.04	0.02	1.29	0.05	4.91
exp9	mini-CAST 5203C (TROPOS)	78	6	0.06	0.02	1.67	0.19	1.75
exp10	mini-CAST 5203C (TROPOS)	194	1	0.08	0.02	1.31	0.03	5.87
exp11	mini-CAST 5203C (TROPOS)	126	2	0.17	0.08	1.05	0.64	2.54
exp12	mini-CAST 5303C	178	1	0.06	0.01	1.13	0.07	6.30
exp13	mini-CAST 5303C	119	3	0.04	0.01	1.13	0.07	7.00
exp14	mini-CAST 5303C	95	4	0.04	0.01	1.14	0.09	4.41
exp15	FasmaTech spark generator	NA	NaN	0.27	0.02	0.79	0.06	0.61
exp16	PALAS GFG 1000	305	32	0.24	0.02	1.64	0.08	4.23
exp17	Aquadag	325	3	0.26	0.00	0.31	0.02	7.60
exp18	Fullerene soot	356	14	0.40	0.05	0.81	0.05	6.58
exp19	Miniature inverted soot generator	NA	NaN	0.23	0.01	0.83	0.04	8.56
exp20	Miniature inverted soot generator	433	24	0.11	0.01	1.07	0.09	5.27
exp21	Miniature inverted soot generator	NA	363	0.21	0.00	0.88	0.04	8.18

AAC is calculated from extinction minus scattering (CAPS, Neph.) measurements at 450, 530, and 630 nm. **SSA** is calculated at 870 nm from PAX measurements.


CONCLUSIONS AND OUTLOOK

• The combustion generators (all the mini-CAST and the miniature inverted soot generator) were able to provide BC aerosol particles with the desired SSA (< 0.2).

• Among the combustion generators, the diffusion flame models (5203C and 5303C) produced particles with the largest AAC. In this regard, the premixed flame model (5201BC) and the iniature inverted soot generator produced particles with AAC closer to 1.0 (the desired value for a fresh-like soot source).

Institut für Troposphärenforschung (TROPOS), Leipzig, Germany.

ÅNGSTRÖM COEFF. vs. SINGLE SCATTERING ALBEDO

• The desired particle diameters were obtained only from the four different mini-CAST burners. However, in the literature it can be found that spark generators and the miniature inverted soot generator are also able to produce particles with diameter < 100 nm.

• Further investigations will include the analysis of samples by EC/OC thermography, Raman microspectroscopy and transmission electron microscopy.

ACKOWLEDGEMENT This work is funded by the European Metrology Programme for Innovation and Research (EMPIR): Project 16ENV02 Black Carbon Metrology for light absorption by atmospheric aerosols.

Physikalisch-Technische Bundesanstalt National Metrology Institute

Bundesallee 100 38116 Braunschweig, Germany www.ptb.de

Jorge Saturno Working group 3.43 **Aerosols and Particle Measurements**

Phone: +49 531 592 3217 Email: jorge.saturno@ptb.de

¹Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

²Leibniz Institute for Tropospheric Research, Leipzig, Germany. ³ Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada.

⁴National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK. ⁵Laboratory Particles and Aerosol, Federal Institute of Metrology METAS, Lindenweg 50, Wabern-Bern 3003. Switzerland.

⁶Laboratoire national de métrologie et d'essais (LNE), Chemistry and Biology Division, Gas and Aerosol Metrology Department, 1 Rue Gaston Boissier, 75724 Paris Cede x 15, France.

⁷E.R.L, Institute of Nuclear Technology & Radiation Protection, N.C.S.R. Demokritos, 15310, Attiki, Greece.

⁸Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.

*Now at: Catalytic Instruments GmbH, Rosenheim, Germany.