

Technion Internal **Combustion Engine**

Particle Emissions of Direct Injection IC Engine Fed with a Hydrogen-rich Gaseous Fuel

Andy Thawko, Harekrishna Yadav, Michael Shapiro and Leonid Tartakovsky

ETH Zurich, Switzerland

18 June 2019

23rd ETH Conference on Combustion Generated Nanoparticles

Outline

- Scientific background- Fuel Reforming
- Experimental Setup
- Performance of ICE with Thermo-Chemical Recuperation
- Particle Emission
- > Summary

Petroleum consumption for transportation

U.S. primary energy consumption by source and sector, 2017 Total = 97.7 guadrillion British thermal units (Btu)

European emission legislation

Diesel Passenger Cars:	Emissions	Unit	Euro 1	Euro 2	Euro 3	Euro 4	Euro 5a	Euro 6b/c
	NOx		-	-	500	250	180	80
	HC+NOx	ma /lum	970	700	560	300	230	170
	со	mg/ km	2720	1000	640	500	500	500
	PM		140	80	50	25	5.0	4.5
	PN	#/km	-	-	-	-	-	$6 \cdot 10^{11}$
Gasoline Passenger Cars:	F unction of the second	11	From 4	5	Faure 2	From A		From Ch /a
	Emissions	Unit	Euro 1	Euro 2	Euro 3	Euro 4	Euro 5a	Euro 6b/c
	ТНС		-	-	200	100	100	100
					150	00	60	60

Gasoline Pa

	Eur	o 1			Euro 2			Eu	ro 3			Eur	o 4		Euro 5a	Euro S	ib	Euro 6		Euro	o 6c
	.993		1995		1997	1999		2001	2003		2005	20	07	2009	2011	2013	3	2015	2017	20)19
1992		1994		1996	1998		2000	20	002	2004		2006	2008		2010	2012	2014	2016		2018	2020
								l	PN		#/1	m	-		-	-		-		-	6.1
								ł			<i>µ/</i>		-		-	-		-		5.00	4 7
									DM	1			2720		2200	200	0	1000		5 00	100
									co				2720		2200	230	0	1000		1000	100
									HC+N	Юx	mg/	'km	970		500	-		-		-	-
									NO	ĸ			-		-	150)	80		60	60
									THC	2			-		-	200)	100		100	100

Fuel energy distribution

Primary fuel selection METHANOL

LIQUID METHANOL:

- Promising primary <u>liquid</u> fuel
 - Low carbon-intensity
 - Potentially renewable
 - Can be produced from natural gas or coal
 - > Alternative for oil as a short term solution
- Can be produced from captured CO₂ – PtX fuel (electrofuel)
- No significant infrastructure change needed
- Low reforming temperatures

GASEOUS REFORMING PRODUCTS:

- Hydrogen-rich gaseous fuel: (75%)H₂+(25%)CO₂
- Better fuel properties
 - LHV increase
 - Higher antiknock quality
 - > High laminar flame speed
 - Wide flammability limits
- Zero-impact pollutant emissions
- No problems of onboard hydrogen storage

Methanol Steam Reforming (MSR): $CH_3OH_{(g)} + H_2O_{(g)} \rightarrow CO_2 + 3H_2$ $\Delta H = 50 \text{ kJ/mol}$

High-Pressure Thermo-Chemical Recuperation

Experimental Setup

Single cylinder, spark ignition engine (Robin EY-20 based)						
Bore x Stroke, mm 67x52						
Displacement, cm ³ 183						
Compression ratio 6.3						
Power, kW @	2.2 @ 3000					
Fuel	Gasoline	Carburetor				
supply system	Hydrogen-Rich Reformate	Direct injection				

Measured reformate composition

Methanol Steam Reforming (MSR)

Poran, Thawko, Eyal, Tartakovsky, Int. J Hydrogen Energy, 2018

Thermo-Chemical Recuperation system Performance

Total particle concentration comparison

Particle size and number distribution- Effect of Fuel

Particle size and mass distribution- Effect of Fuel

Total particle concentration comparison

High compression ratio ICE

Experimental setup

2-1					
Single cylinder, Petter AD1 based					
Bore x Stro	ke, mm	80x73			
Displaceme	ent, cm ³	367			
Compressio	on ratio	16			
Power, kW	@ speed, rpm	5.3 @ 3000			
Fuel	Diesel	Direct			
injection	Hydrogen-Rich	direct			
system	Reformate	port			
	on of direct and po	ort reformate i			
(companie					

Fuel injection strategy - Efficiency

- > Wide open throttle in all cases
- > 13-19% improvement for MSR DI
- > 23-26% improvement for MSR PI

- PI limitations:
 - Maximal power loss
 - Low volumetric efficiency
 - > Abnormal combustion- backfire, pre-ignition

High pressure hydrogen-rich reformate injection

- Underexpanded gaseous jet
- > Possible mechanisms for particle formation

Underexpanded jet in gaseous fuel DI

Classification	Nozzle pressure ratio (NPR)
Subsonic jet	$1 < P_0/P_\infty < 1.893$
Moderately underexpanded jet	$2.08 < P_0/P_\infty < 3.8$
Highly underexpanded jet	$3.84 < P_0/P_\infty$

Crist S. et al., AIAA J., 1966

- Jet-wall impingement
- Lubricant vapor entrainment towards the gaseous jet
- Hydrogen low quenching distance

Summary

DI-ICE with High-Pressure Thermo-Chemical Recuperation was developed enabling:

- Efficiency improvement (up to 39%)
- Series Gaseous pollutant emission reduction (up to 94%, 96% and 97% for NOx, CO and HC, respectively)
- Direct injection of reformate leads to higher particle formation compared to gasoline
- Future research will focus on identification of particle formation mechanism, and development of methods to mitigate particle emission

Acknowledgments

The financial support of:

- Israel Science Foundation (ISF)
- Israel Ministry of Environmental Protection
- ➢ Israel Ministry of Energy
- > Nancy and Stephen Grand Technion Energy Program (GTEP)
- > The Council for Higher Education (CHE)- Planning and Budgeting Committee (PBC)

is highly appreciated

Thank you for your attention!

Further information:

Andy Thawko

Technion – Israel Institute of Technology Grand Technion Energy Program

email: Andythawho@gmail.com

Leonid Tartakovsky

Technion – Israel Institute of Technology Mechanical Engineering Faculty Grand Technion Energy Program

email: tartak@technion.ac.il