

Fachhochschule Nordwestschweiz

UNIVERSITÄ BERN

Laboratory-generated soot with well-defined organic coating fo in-vitro cytotoxicity assessment"

Interdisciplinary project funded by the Federal Office for Environment (FOEN, N° 17.0094.PJ)

Zaira Leni Konstantina Vasilatou, Michaela Ess, Alejandro Keller, Marianne Geiser

> ETH Conference 19 June 2019

6 Iution is the 6th highest-ranking risk factor for death globally

92%

More than 9 out of 10 of the world's population lives in areas **exceeding WHO** guidelines for safe limits.

<1% In China and India, less than 1% of the population lives in areas meeting the WHO guidelines

Source: WHO 2016

Health Effects Institute. 2018. State of Global Air 2018. Boston MA

Global map of modelling annual median concentration of PM_{2.5} in µg/m^{3 http://maps.who.int/airpollution/}

Adapted from "Recent advances in understanding SOA: implications for global climate Shrivastava

UNIVERSITÄT BERN

Project goals and experimental setup (I)

UNIVERSITÄ

BERN

eration of well characterized aged soot particles coated with oxidized organic matter

- Anthropogenic origin (1,3,5-trimethylbenzene, urban site)
- Biogenic origin (α -pinene, suburban)

01 Type BC . Vasilatou, *Aerosol Science and Technology* (2019)

Project goals and experimental setup (II)

(Nano-)Aerosol Chamber for In-Vitro Toxicology, NACIVT (<u>www.nacivt.ch</u>)

54 × 49 × 48 cm (WDH), 30.5 kg

ing laver	*	Adapt	ed from Burri & Weibel, 1973
ant film ¬aqueous phase			
m Ciliated cells Secretory cells		000000	*8
	0 0	Capillaries	
nages	Bronchus	Bronchiole	Alveolus

Aerosol (external production/ source)
Aerosol conditioning (T; RH)
Aerosol distribution to delivery tubes Particle deposition on 24 cell cultures
Custom electronics (aerosol

charger, integrated pump, flow control)

ALI

- "All-in-one", mobile system for direct at any particle source
- Mimics particle deposition in lungs (T gas composition, air flow, N_P, N_{dep})
- Simultaneous exposure of 24 cell cult
- Controlled & stable conditions allow l term exposures

Objective and experimental setup (III)

UNIVERSITÄ BERN

three experimental campaigns took place at Federal Institute of Metrology (METAS)

1st: 13-16/08/2018 (TMB) 2nd: 03-17/12/2018 (TMB) 3rd: 13-24/05/2019 (α-pinene)

equipment of University of Bern transferred to AS:

- NACIVT chamber
- Cell culture lab (e.g. sterile bench, cell incubator)
- Light microscope

Exposure of realistic cell models to well-controlled, chemically defined synthetic reference aerosols, to identify t aerosol components/properties responsible for adverse respiratory effects.

Particle number concentration remains the same between 30 nm and 90 nm in all three campaigns: 30 nm ~ 4 x 10⁵ NP/cm³ 90 nm ~ 1.3 x 10⁵ NP/cm³

Io significant difference in terms of cytotoxicity between incubator control (I.C), p-free air and synthetic air exposed cells

oot particles consisting only of EC (90 nm UnCoated soot) cause no cytotoxic effects

Cytotoxicity increases with increasing coating thickness. Max-Coat 90 nm induces the highest cytotoxicity, i.e. release of LDH (mean

Cytotoxicity increases with coating thickness as in the case with TMB as SOA-precursor

 \blacktriangleright General, slightly lower cytotoxic effect with α -pinene as precursor compared to TMB

Ongoing analysis: Secretome

102 cytokines analyzed

UNIVERSITÄT RERN

1st and 2nd campaign: TMB as SOA-precursor

Out of 102 cytokines and chemokines analyzed, 35 are down- or up-regulated in comparison to incubator control

Conclusion and outlook

- t particles consisting **only of EC** (90 nm UnCoated soot) cause no cytotoxic effects.
- ptoxicity increases with **coating thickness** with TMB and α -pinene as SOA-precursors.
- **nene** as SOA-precursor cause slightly lower cytotoxic effect compared to TMB.

ngoing and future activities:

- nsmission electron microscopy (TEM) of cell culture sections and of particles sampled on TEM grids. Tetome analysis for the 3rd campaign
- ne pilot study has led to the EU project: EMPIR AeroTox (<u>http://empir.npl.co.uk/aerotox</u> focal microscopy of samples from 2nd and 3rd campaign at the National Physical Laboratory (NPL, UK). lysis of the degree of oxidation of the organic matter by Aerosol Mass Spectrometry (NPL, UK).

UNIVERSITÄT

Acknowledgments

UNIVERSIT BERN

5 UNIVERSITÄT BERN

AeroTox Partners

FINNISH METEOROLOGICAL INSTITUTE

 $u^{\scriptscriptstyle \mathsf{b}}$

^b UNIVERSITÄT BERN

Ongoing analysis: TEM inserts

2nd EXPERIMENTAL CAMPAIGN: TMB as SOA-precursor

5 UNIVERSITÄT BERN

b

3rd campaign: α-pinene as SOA-precursor

ptoxicity upon exposure to coated soot much higher than that of incubator control and particle-free air tests -> increase in cytotoxicity is indeed caused by coated soot particles

1st and 2nd campaign: TMB as SOA-precursor (II)

Good reproducibility between the 1st and 2nd campaign

Model aerosols:

internal mixture of soot core particles with coating from secondary organic matter

Properties tested:

uncoated vs. coated particles, role of soot core size, coating thickness and coating chemistry

Further tests to clarify the role of:

- primary vs. secondary organic coating
- secondary inorganic coating
- internal metal admixtures
- externally mixed dust particles (e.g. from brake abrasion)

Biomedical analyses will be complemented with toxicogenomics and particle uptake studies

