

Occurrence and Radiative Properties of Long-Range Transported Wildfire Aerosol Measured at the Jungfraujoch

<u>B. T. Brem¹</u>, N. Bukowiecki¹, G. Wehrle¹, M. Collaud Coen², M. Steinbacher³, S. Henne³, S. Reimann³ U. Baltensperger¹ and M. Gysel-Beer¹

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland ²Federal Office of Meteorology and Climatology, MeteoSwiss, CH-1530 Payerne, Switzerland ³Laboratory for Air Pollution/Environmental Technology, Empa, CH-8600 Dübendorf, Switzerland

24th ETH-Conference on Combustion Generated Nanoparticles – Cyber Space – 22 Juni 2021

PAUL SCHERRER INSTITUT

JFJ

25+ Years of Continuous Aerosol Observations on the Jungfraujoch

- One of the longest continuous records within Europe
- Trends and climate relevant aerosol properties have been the key focus of our monitoring program
- Transport from the polluted planetary boundary layer (PBL) during the summer months drives the annual oscillation

Known Long- Range Transported Aerosols at JFJ

- Saharan Dust (e.g. Feb.6, 2021)
 - 20 to 50 events per year
 - Contribute to ~25 to 30% of total PM mass
 - Very distinct coarse mode and optical

characteristics

Schwikowski, M., et al., Atmos. Environ. 32: 4001–4010, (1998) Collaud Coen, M., et al., Atmos. Chem. Phys., 4, 2465-2480, (2004)

ABORATORY OF

Known Long- Range Transported Aerosols at JFJ

- Saharan Dust (e.g. Feb.6, 2021)
 - 20 to 50 events per year
 - Contribute to ~25 to 30% of total PM mass
 - Very distinct coarse mode and optical

characteristics

Schwikowski, M., et al., Atmos. Environ. 32: 4001–4010, (1998) Collaud Coen, M., et al., Atmos. Chem. Phys., 4, 2465-2480, (2004)

- Volcanic Ash (e.g. Eyjafjallajökull 2011)
 - 2 to 3 events per decade
 - Distinct bi –modal distribution with significant sulfate mass in the accumulation mode

Bukowiecki, N., et al., Atmos. Chem. Phys. 11: 10011-10030, (2011)

LABORATORY OF ATMOSPHERIC CHEMISTRY

Known Long- Range Transported Aerosols at JFJ

- Saharan Dust (e.g. Feb.6, 2021)
 - 20 to 50 events per year
 - Contribute to ~25 to 30% of total PM mass
 - Very distinct coarse mode and optical

characteristics

Schwikowski, M., et al., Atmos. Environ. 32: 4001–4010, (1998) Collaud Coen, M., et al., Atmos. Chem. Phys., 4, 2465-2480, (2004)

- Volcanic Ash (e.g. Eyjafjallajökull 2011)
 - 2 to 3 events per decade
 - Distinct bi –modal distribution with significant sulfate mass in the accumulation mode

Bukowiecki, N., et al., Atmos. Chem. Phys. 11: 10011-10030, (2011)

LABORATORY OF

Снемі

- \bigstar
- Large-scale forest fires are making headlines (*e.g.* 2017 Portugal, 2018 Sweden, 2019 Indonesia, Australia, Siberia, 2020 California)
- In boreal regions they are a symptom of the earth's warming and their frequency is increasing
- A fraction of fire emissions are injected into the free troposphere where they can be transported over long distances

A large pyrocumulus cloud above the Carr fire in California, 2018 (Getty Images)

Objectives:

- 1) Develop a data screening procedure to identify forest fire plumes in Jungfraujoch *in-situ* data
- 2) Report plume frequency of occurrence and durations
- 3) Provide climate relevant optical and microphysical plume properties

2015 – 2019 period evaluated for the following hourly datasets:

Property	Instrument
b _{sp} , b _{bsp}	TSI 3536Nephelometer
b _{ap}	Magee AE-33 Aethalometer
PSD (fine)	SMPS (PSI)
PSD (coarse)	TSI 3330 OPS
CO ₂ , CO, CH ₄	NDIR
NO, NO_2 , NO_y	CLD
VOCs	GC-MS

Data Screening:

- 1. b_{ap} > 0.3 Mm⁻¹ (λ =550nm) → avoid LOD
- 2. $\alpha_{SSA} > 0.035 \rightarrow \text{reject SDEs}^{(1)}$
- 3. $\alpha_{ap470 520} > \alpha_{ap470 950} \rightarrow \text{short } \lambda \text{ enhanced } b_{ap}$ wbf_470 and 950 > 0.5 ⁽²⁾
- 4. $CO/CO_2 > 2.4 \times 10^{-4} \rightarrow Only$ major plumes
- 5. $NO_{v}/CO < 7.5 \times 10^{-3} \rightarrow \text{Avoid local influence}^{(3)}$
- Plume was considered when these criteria prevailed ≥ 8 hrs.
- Empa's FLEXPART browser⁽⁴⁾ used to identify source sensitivities and regions

(1) Collaud Coen, M., et al., Atmos. Chem. Phys., 4, 2465-2480, (2004) (3) Zellweger, C., et al., Atmos. Chem. Phys., 3, 779–796, (2003) Wildfire Plume Occurence and Frequency

- In comparison to SDEs (400-600 hrs. yr⁻¹) plume occurrence is lower and also less frequent
- 2017 most significant year with fires in Southern France (March/ April), Portugal (June) Canada (September) and Spain (October)

- Back trajectory analysis identified source regions with reported fires for 37/49 plumes
- Source regions: Europe (19), North America (14), North Africa (3), Asiatic Russia (1)

- Scattering and absorption levels reach values of a city outflow
- Single scattering albedo and backscatter fraction remain fairly constant during event indicative of an atmospheric processing

 No drastic variations, indicative of the atmospheric processing of these plumes⁽¹⁾

25%~75%

1.5 IQR

Median

Mean

Outlier

700 nm

 Size distribution statistics in line with aircraft observations of other plumes;⁽²⁾ however, we do not observe an additional Aitken mode

⁽¹⁾ e.g. Liu, S., et al., Geophys. Res. Lett., 41,742–748 (2014) ⁽²⁾ e.g. Petzold, A., et al., Atmos. Chem. Phys., 7, 5105–5127, (2007)

On a global average (surface) albedo \approx 0.26) these plumes exhibit a negative radiative forcing in the atmospheric column

- However, over clouds or fresh snow (surface albedo \approx 0.9), the forcing is positive
- The increased UV-Vis forcing might have implications for the actinic flux and photochemistry in the atmospheric column below the plume

Wavelength λ (nm)

- Wildfire plumes occur frequently at the Jungfraujoch (6-12 plumes/ avg. 167 hrs. yr⁻¹)
- The plumes have fairly low variations in optical properties and size distributions indicative of atmospheric processing/ transport
- The plumes exhibit on average a negative radiative forcing. However, effects on the actinic flux and photochemistry in the underlying column might be relevant

Next steps:

- Analysis of cloud droplet activation properties
- Analysis of plume age influence
- Permanent installation of an aerosol chemical speciation monitor will allow to look for biomass burning markers (starting this year)

Acknowledgements

Funding:

- International Foundation High Altitude Research
 Stations Jungfraujoch and Gornergrat
- MeteoSwiss Global Atmosphere Watch program
- European Union's Horizon 2020 research and innovation program under grant agreement No 654109 (ACTRIS2)
- the Swiss National Air Pollution Monitoring Network (NABEL) NABEL is operated by Empa in collaboration with the Swiss Federal Office for the Environment (FOEN)

My thanks go to:

- Günther Wehrle and Pascal Schneider (PSI LAC Engineering Team)
- Cyril Brunner, Zamin Kanji, Ulrike Lohmann IAC ETH
- Alejandro Keller and Ernest Weingartner FHNW

https://www.psi.ch/de/lac/projects/last-72h-of-aerosol-data-from-jungfraujoch email: benjamin.brem@psi.ch phone: +41 56 310 24 65

Appendix: Fire induced forest loss 2003 -2014

Percent of mean annual fire-induced forest loss and fire severity between 2003 and 2014 Liu, Z., et al., Nat. Commun. 10, 214 (2019)

Simple Forcing Efficiency (*SFE*) calculates added energy (W) at the top of the atmosphere per mass (g) of aerosol (*Bond and Bergstrom,* 2006)

$$SFE \approx -\frac{S_0}{4} \tau_{Atm}^2 (1 - F_C) \left[2 \left(1 - a_S \right)^2 \beta MSC - 4a_S MAC \right]$$

- S = Solar irradiance (W m⁻²)
- τ_{Atm} = Atmospheric transmission
- $F_{\rm c}$ = Cloud fraction
- *a*_s = Surface albedo
- *β* = plume backscatter fraction
- *MSC* = plume mass scattering cross-section (m² g⁻¹)
- *MAC* = plume mass absorption cross-section (m² g⁻¹)

