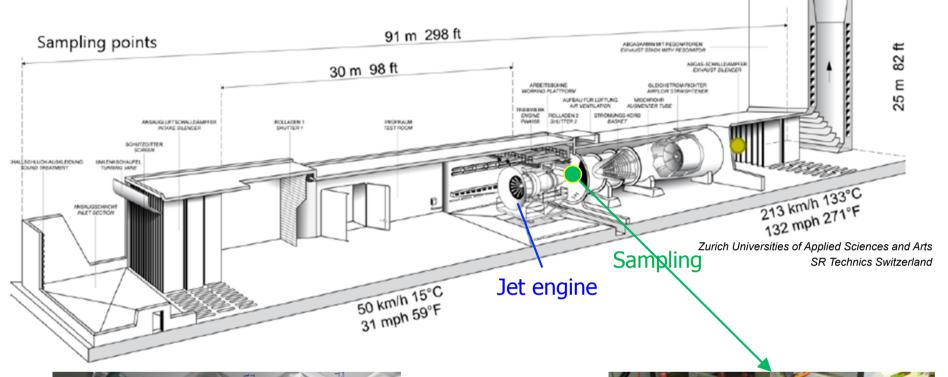
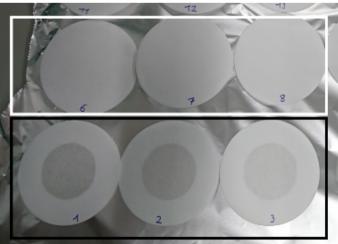

Organic analysis of aircraft engine smoke number filter samples with thermal-optical carbon analysis and thermal desorption—gas chromatography/mass spectrometry

Akihiro Fushimi 1*

Katsumi Saitoh ^{1,2}, Yuji Fujitani ¹, Lukas Durdina ³, Julien G. Anet ³, Jacinta Edebeli ³, Curdin Spirig ³, Nobuyuki Takegawa ⁴


- Jet lubrication oil is a dominant component of aircraft exhaust nanoparticles (Fushimi et al., ACP, 2019)
- Where are oil nanoparticles emitted or formed?

- 1 National Institute for Environmental Studies, **Japan**.
- 2 Environmental Science Analysis and Research Laboratory, **Japan**
- 3 Zurich University of Applied Sciences, **Switzerland**
- 4 Tokyo Metropolitan University, **Japan**
- * fushimi.akihiro@nies.go.jp

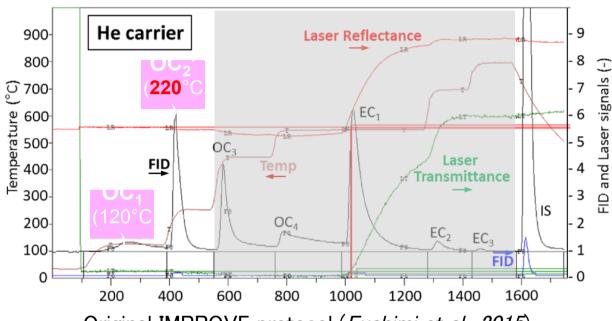

24th ETH-Conference on Combustion Generated Nanoparticles, June 22-24, 2021, Online

Smoke number paper filter samples collected at SR Technics (Zürich Airport, Switzerland) in 2019-2020

White

Gray

Smoke meter


Undiluted exhaust @160 °C, Chell, CSM2000, filter paper (Whatman, No.4, 55 mm)@ 70 °C, 14 L min⁻¹

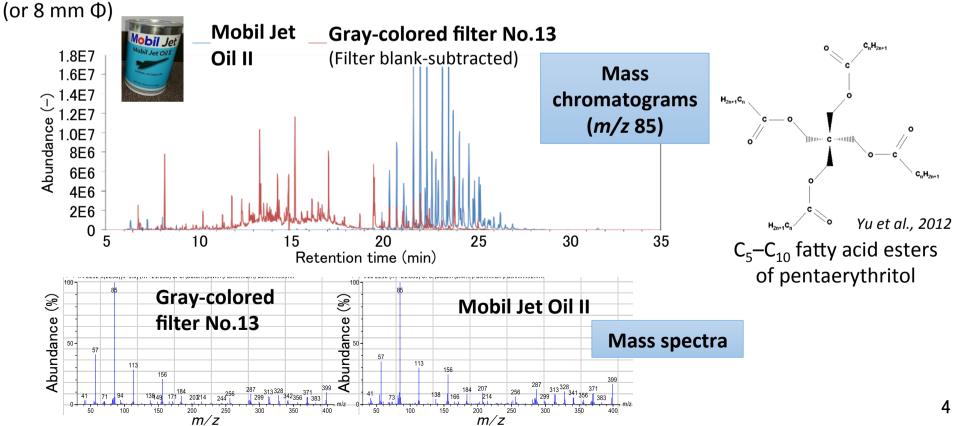
Volatile organic carbon (OC) clearly detected from the smoke number paper filters

DRI Model 2001 Carbon Analyzer

Original IMPROVE protocol (Fushimi et al., 2015)

	Gray filters (<i>n</i> = 5)	White filters (n = 5)
OC_1 (µgC/cm ²)	0.26±0.16	ND
OC_2^- (µgC/cm ²)	1.76±0.39	0.11±0.24
$OC_1 + OC_2' (\mu gC/cm^2)$	2.1±0.5	0.11±0.24
$OC_1 + OC_2' (\mu gC/m^3)*$	1,200±300	60±140

Filter-blank ($OC_1+OC_2' = 2.04\pm0.70 \,\mu\text{gC/cm}^2$, n = 3)-subtracted values. * Estimated using the sampling volume of 11 L.


Major components of jet lubrication oil clearly detected from the smoke number paper filters with TD-GC/MS*

5 mm Φ x 2

* Thermal-Desorption Gas Chromatography / Mass Spectrometry

Thermal desorption: $40^{\circ}\text{C} (0.5 \text{ min}) \rightarrow 50^{\circ}\text{C min}^{-1} \rightarrow 220^{\circ}\text{C} (3 \text{ min})$

Conclusions

- Smoke number paper filters can be used for measuring PM volatile organic compounds
- OC and lubrication oil components clearly detected
- → Oil consisted in the jet engine exhaust

Future plan

- Filter sampling (bulk and size-resolved) at room temperature at engine exit and 30-m downwind
- Detailed chemical analysis
- → Where are oil nanoparticles emitted or formed in jet engine exhaust?

Related poster presentation

2P-036 Saitoh et al., Elements and ions.