

24th ETH conference

22.6.2021

Super Polluter IDentifiER (SPIDER)

a tool for on-road detection of vehicles that contribute disproportionally to the vehicle fleet emissions

I. Ježek¹, T. Rutar², M. Ivančič¹, M. Rigler¹, A. Gregorič^{1,2}, G. Močnik^{3,2,4}

¹ Aerosol d.o.o., Ljubljana, Slovenia

² University of Nova Gorica, Center for Atmospheric Research, Nova Gorica, Slovenia

³ Jožef Stefan Institut, Ljubljana, Slovenia

⁴ Haze Instruments d.o.o., Ljubljana, Slovenia

European vehicle emission standards

- In the European Union, emissions of nitrogen oxides (NO_x), total hydrocarbon (THC), non-methane hydrocarbons (NMHC), carbon monoxide (CO), particulate matter (PM) and particle number (PN) are regulated for most vehicle types.
- The standards apply to new models sold into the European market.
- Dieselgate & "Cycle beating" controversy → in 2017 introduction of new test standards with real-world conditions called Real Driving Emissions (RDE), using portable emissions measurement systems in addition to laboratory tests.

WLTC Class 3b – Worldwide Harmonized Light Vehicles Test Procedure

THE ON-ROAD CHASING METHOD

Measuring exhaust plume of a vehicle while chasing it on the road

- Subtract background
- Assume all carbon in fuel burns to CO₂
- Assume the ratio of pollutants remains the same from the tailpipe to the measurement platform

$$EF = \frac{\int_{i}^{j} (P_{j} - P_{i}) dt}{\int_{i}^{j} (CO_{2j} - CO_{2i}) dt} \cdot w_{c}$$

Method described in Ježek et al, 2015, AMT

Pollutant	Instrument	Resolution	
BC	Aethalometer AE33	1 s	
PN	TSI, FMPS	1 s	
NO _x (2011)	2B Technologies 410 and 401	20 s	
NO _x (2017)	EcoPhysics, CLD86	1 s	
CO ₂	Vaisala, Carbocap GMP 343	2 s	

VEHICLE FLEET CAPTURED IN MEASUREMET CAMPAIGNS Mar 2017 and Dec 2011

Category	Vehicle type	2001/11 6/EC	2017 # with registry information	2017 # missing registry information	2011 # with registry information	2011 # missing registry information
Gasoline cars	Gasoline cars	M1	118 (39)		24	
	Gasoline/LPG	M1	3 (2)			
Diesel cars	Diesel cars	M1	131 (59)		51	2
	Light goods vehicles 1	N1	12 (7)		17	2
Goods vehicles	Light goods vehicles 2	N2	82 (23)	3	8	2
	Busses	M3	15 (7)	2	6	2
	Minibus	M2			1	
	Heavy goods vehicles	N3	45 (8)	24 (1)	32	15
TOTAL			406 (145)	29 (1)	139	21

2017 - in brackets is the number of vehicles to which also EF PN was determined.

2011 campaign results were published in Ježek et al., 2015, ACP

EMISSION FACTOR DISTRIBUTION 2017 (yellow) and 2011 (blue)

RESULTS ACCORDING TO VEHICLE AGE in 2017 (yellow) and 2011 (blue)

SUPER POLLUTERS

Excluding super polluters from the vehicle fleet would reduce the total fleet emissions more than excluding vehicles based on their age or emission standard.

CONCLUSIONS

- **Real world measurements** are important because individual vehicle emissions depend not only on the vehicle type approval at the time it is put on the market, but also on their maintenance and the driving conditions.
- The chasing method is a **simple method** that can be used to determine individual vehicles EF.
- Independent method to monitor fleet emissions and effectives of new emission standards.
- Determination of **super polluters**. Excluding Super Polluters can significantly reduce total vehicle fleet emissions.

Further testing of the chasing method with PEMS.

Contact: irena.jezek@aerosol.eu

ETH, 22.6.2021

Thank you for your attention!

Acknowledgements.

This research was part founded by European Regional Fund (MECEDES).

The authors would like to acknowledge **Slovenian Ministry of Infrastructure and Spatial Planning** for providing the vehicle registration information;

TSI for lending their instrument;

Anže Buh for driving the mobile station and discussing some of the vehicle technologies;

and to our colleagues at Aerosol d.o.o. for continuing technical support and discussion.

