Behavior of particles and gases in vehicle cabin

Micro-environment that can affect our health

Heejung Jung¹, Nick Molden², and Manabu Shiraiwa³ University of California Riverside Emissions Analytics University of California Irvine

Agenda

1. Background

- 2. Behavior of particles in vehicle cabin
- 3. Behavior of gaseous pollutants in vehicle cabin

Background

- The in-cabin microenvironment was estimated to contribute 10–50% of people's daily exposure to vehicular emitted UFPs (Zhu et al. 2007)
 - Probably the same for other gaseous pollutants and PM2.5.

- Cleaner vehicle cabin air quality.
 - → Less exposure to mobile source air toxics (MSATs) and criteria pollutants.

Cabin air flow and the HVAC unit

From Valeoscope technical handbook

Agenda

- 1. Background
- 2. Behavior of particles in vehicle cabin
- 3. Behavior of gaseous pollutants in vehicle cabin

Define Cabin Air Quality Index (CAQI)

•
$$CAQI_{pollutant} = \frac{\int_{0}^{t} C_{pollutant_inside} dt}{\int_{0}^{t} C_{pollutant_outside} dt}$$

•
$$CAQI_{CO_2} > 1$$
 Stuffiness Ex) 1000ppm/400ppm=2.5

• $CAQI_{particle} < 1$

Infiltration ratio

Standard Vehicle Cabin Air Quality Testing Method (SAE Int. J. Commer. Veh. 12 (2))

- There are two mode of testing: Static and Dynamic
- Static test characterizes auto-manufacturer's original HVAC design
- Dynamic test characterizes vehicle's ability to maintain clean cabin air quality on-road real-world condition.
- It enables inter-comparison among different vehicles and researchers

Static test (test vehicle at rest in a workshop)

- 1. Set data marker
- 2. Open doors for two minutes to ventilate cabin
- 3. Close doors and windows
- 4. Air recirculation on or off
- 5. Set fan speed
- 6. Switch on AC at manual setting, 50% of maximum fan speed
- 7. Deploy CO₂ canister
- 8. Wait for five minutes
- 9. Set data marker

Dynamic test

- 30 min drive of urban polluted route
- Low speed range (i.e <40 mph for 90% of time)
- Recirculation ON/OFF
- Two passengers, AC ON, fan speed at mid speed, and chest vent mode.
- Integrated IO ratio over the driving route.

Driving route

Experimental setup

PN: CPC, NAQTS PS: EAD BC: μAeth Gases: NAQTS

Experimental setup

Pairs of instruments

- TSI CPC 3022 (d50=7nm) => d⁰
- TSI Electrical Aerosol Detector (d50=10nm) =>d^{1.13}
- MicroAeth MA300=>d³ or BC mass
- NAQTS (CO₂, and particle count)

Static test

Test #	Fan Speed	Recir.	AC	AER(h⁻¹)
1	1	Off	Off	30
2	3	Off	Off	44
3	5	Off	Off	54
4	3	On	On	4

Dynamic test

Cabin air quality index (CAQI)

The effect of particle metric on CAQI

Agenda

- 1. Background
- 2. Behavior of particles in vehicle cabin
- 3. Behavior of gaseous pollutants in vehicle cabin

Experimental setup

A 2016 Toyota Highlander with a 7 seat capacity

Horiba instruments	Gases
APMA-370	СО
APNA-370	NO, NO ₂ , NO _x
APOA-370	0 ₃

Instrument/equipment	Brand/model
Data logger	dataTaker, model dt80
6 V lead acid batteries	US Battery, model 145
Inverter	Chicago Electric Power Systems, 2000 W AC/DC

1. Static test

Vehicle at rest, engine off, vehicle power off, ventilation fan off, in a background location.

2. Dynamic test

Vehicle driven at city driving condition at the speed less than 40 mph. Ventilation fan on.

Kinetic model

- A box model with 20 reaction equations/deposition rates to vehicle surfaces
- Although simplified, major reactions for HO_x and NO_x chemistry, photolysis of O₃, H₂O₂, and NO₂, O₃ reactions with VOCs and skin oxidation products, and surface deposition of O₃ and NO₂ were included.
- Passenger's breathing rate, volume of vehicle, air exchange rate due to instruments consuming cabin air, endogenous emissions of CO, NO, and isoprene were assumed.
- Isoprene was included in the model as it is a major VOC emitted from breath and contains two double bonds making it reactive with ozone.
- Ozone deposition velocity and skin area of the passenger were taken into account.

Kinetic model

Reaction
$O_3 + hv \rightarrow O + O_2$
$O + O_2 (+ M) \rightarrow O_3 (+ M)$
$NO + O_3 \rightarrow NO_2 + O_2$
$NO_2 + hv \rightarrow NO + O$
$O_3 + NO_2 \rightarrow NO_3 + O_2$
$NO_2 + NO_3 (+M) \rightarrow N_2O_5 (+M)$
$N_2O_5(+M) \rightarrow NO_2 + NO_3(+M)$
$N_2O_5 + H_2O \rightarrow 2HNO_3$ (on surfaces)
$O_3 + 6-MHO \rightarrow Products$

O_3 + Isoprene \rightarrow Products				
O ₃ reaction with gas -phase VOCs or				
deposition to car surfaces				
NO_2 deposition to car surfaces with a				
certain yield of NO				
$CO + OH \rightarrow CO_2 + H$				
$H + O_2 \rightarrow HO_2$				
$HO_2 + NO \rightarrow NO_2 + OH$				
$OH + NO_2 \rightarrow HNO_3$				
$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$				
$H_2O_2 + hv \rightarrow OH + OH$				
$H_2O_2 + OH \rightarrow HO_2 + H_2O$				

Static test

Static test

Dynamic test

Cabin Air Quality Index,

Conclusion / Take home message

- Vehicle cabin air should be controlled to protect passengers' health
 - Current control method is a baby step.
- Better control devices should be developed and adopted for particulate and gaseous pollutants.
- Industry needs motivation to do the above.
 - Pressure from customers
 - Advanced research results from academia
 - Faster adoption of new technologies

If interested, join the committees.

- SAE Interior Exhaust Gas Committee
- SAE VOC Committee
- UNECE, Vehicle Indoor Air Quality Committee
- CEN WS/103 Real drive test method for collecting vehicle in-cabin pollutant data