

Clean Air Testzone Reduction of emissions from wood stoves -> from lab to real life

Morten Køcks Danish Technological Institute mly@dti.dk +45 7220 2380

Background

- ~700,000 wood stoves in Denmark (population 6m)
 - Acounts for up to 70% of BC and PM2.5 pollution

• Regulation:

- Emission only regulated for type approval in laboratory
- Stoves from before 2003 replaced when change of ownership
- Intensive political discussions at the moment...
- Stove operation has a huge impact on emissions
- Recent development in wood stove technology
- Real-life effect on emissions?

INSTITUT

Clean Air Test zone – Reduction of emissions from wood stoves

- Effect of interventions on emissions in real life situations
- Impact on indoor environment and neighborhood

! Identify measures that provide most environmental impact from a cost-benefit perspective (cost/effect)

How?

- Carefully selected residential area
- Technological approaches:
 - New stoves
 - Filter
 - Draft booster / new chimney
 - Education
- Documentation of effect:
 - Outdoor air quality sensors main focus on PM
 - Indoor air quality sensors
 - Direct emission measurements in chimneys with state-of-art equipment

TEKNOLOGISK INSTITUT

Installation af stove/filters (summer/autumn 2021)

Education in correct burning (autumn/winter 2021)

Winter 2020/21

- Sensor installation
- Baseline:
 - Air quality measurements (indoor + outdoor)
 - Direct emissions (selected stoves)

Winter 2021/22

- Year 1 with initiatives
 - New stoves
 - Filters
 - Education

Winter 2022/23

- Year 2 with new/further initiatives:
 - Chimneys
 - Draft booster
 - Education
 - (new stoves)

Mårslet, Denmark

- Sufficient number of wood stoves and active in use
- Little ecpected background pollution (roads, industry, etc.) for dominating wind direction
- Criteria for selection:
 - Frequency of use and age of stoves
 - Density and placements of participants
 - > Lamp-posts for adequate sensor placements

Præstegårdsvej, Mårslet

- 25 participating households
- ~20 indoor sensors installed
- 4 outdoor sensors + 1 background sensor

Præstegårdsvej, Mårslet

• Divided into 4 main zones:

	Year 1	Year 2år (tentative)
la	New stove	-
lb	New stove	New chimney / draft booster
П	Filter	New stove and/or education
III	Education	(new technology)

Local interviews during a pandemic and installing indoor sensors – not an easy job!

akken:
irrelse, mængde:
Klager fra nabober?:
Rygning i hjemmet:
Bruges ovn samtid, med emhætte:
ved opstart?:
Egnet til online målinger: (J/N)
t og genfyring første 4 måneder:

Data collection – outdoor sensors

Raw data from Test zone – background sensor (red) vs. local (black)

Example: Præstegaardsvej sensor 4 (pm_{2.5})

Observed variations can be due to many different effects, such as:

- Local emissions (incl. wood stoves)
- Wind (direction, dilution, speed, turbolence, ...)
- Background (long distance transport)

•

Analysis approach – met. normalization:*

- Fit concentrations based on input (wind speed, wind direction, diurnal variation, etc.)
- Non-linear fit performed through random forest (machine learning)

* See Grange & Carslaw (2019) for further information

Prel. results

Prel. results

Prel. results

Prel. results - summary

- Substantial contribution from wood stoves (and other local sources) in all size fractions
- Largest relative contribution for PM1
- 25-50 % increase in PM2.5 as compared to BG (average for a 3 month period)
- Comparing results with reference city monitoring station (Botanic garden, Aarhus) provides a good sanity check of data for now

Uncertainties

- Separation between wood stoves and other local sources
- Correction for sensor artefacts (e.g. spikes at high RH)
- Potential systematic biases between sensors

Next steps:

- Explore temporal variation and coupling with fuel logs / chimney temperature profiles
- On-site calibration of sensors (scheduled fall 2021)
- Add subsequent measurements to explore source attribution (e.g. summer vs. winter contributions)
- Improve on sensor artefact identification

Reference measurements

- Selected households (2 per zone)
- Onsite measurements (1-2 days)
- Measurements before/after intervention
- Measurement of: •
 - Temperature [°C]
 - CO2 [%-vol]
 - CO [%-vol og mg/Nm3 v/13% O₂]
 - OGC [mgC/nm3 v/13% O₂]
 - NOx [mg/nm3 v/13% O₂]
 - Dust (PM in hot exhaust)
 - PM2.5 (with developed ambient sensor)

Measurement rack

Summary

- Emission reducing steps demonstrated in real life test zone
- 25 participating households in Mårslet, Denmark
- Focus on baseline so far main challenge is separating wood stove signal from other local sources (ambient measurements)
 - To be coupled with direct emission measurements
- Effect of different interventions to be demonstrated the next two heating seasons
- Measurements indicate a 25-50% increase in PM2.5 during heating season 20/21 as compared to surburban background.

DTI contact points

Project manager Jacob Ask Hansen +45 7220 2281 jbha@dti.dk

Data modelling Thor-Bjørn Ottosen +45 7220 1432 <u>thot@dti.dk</u> Stove technology Lars Schwarzer +45 7220 1536 lars@dti.dk Air quality Morten Køcks +45 7220 2380 <u>mly@dti.dk</u>

BlueChimney

HUJam intelligent heat

SCHIEDEL

DAPO Foreningen af Danske Leverandører

af Pejse og Brændeovne

leapcraft

() HETA

BUILD AALBORG UNIVERSITET

AARHUS UNIVERSITET DCE - NATIONALT CENTER FOR MILJØ OG ENERGI

Miljø- og Fødevareministeriet Miljøstyrelsen