

Kun Li :: Postdoctoral Scientist :: Paul Scherrer Institute

Secondary nanoparticles formation and composition from open and residential wood combustion

ETH-Conference on Combustion Generated Nanoparticles, 24 June 2021

Background Methods SOA formation SOA composition Summary

Biomass burning organic aerosols

Background Methods SOA formation SOA composition Summary

PAUL SCHERRER INSTITUT

Forest fire and residential wood combustion

- Forest fire (wildfire) has increased in frequency, intensity, and area in the past few decades, and is predicted to continue to do so.
- Residential wood combustion is one of the major sources of organic aerosol in Europe during winter (15-60%).

McClure & Jaffe, PNAS, 2018, 7901.

PAUL SCHERRER INSTITUT

Methods – Overview

Open burning (Forest fire) - twigs, barks and needles

Residential wood burning - wood logs

Objectives:

- Quantify the SOA formation at a wide range of photochemical ages.
- Molecular-level SOA composition and its evolution over oxidation.

Background \rightarrow Methods \rightarrow SOA formation \rightarrow SOA composition \rightarrow Summary

PAUL SCHERRER INSTITUT

Oxidation Flow Reactor (OFR)

Laminar-flow OFR (formerly ECCC-OFR):

- Improved design can reduce jetting and recirculation in the reactor.
- Reduced wall loss and enhanced SOA yields.

PAUL SCHERRER INSTITUT

• Extractive electrospray ionization mass spectrometry (**EESI-MS**) is the cutting-edge technique to characterize molecular-level composition of aerosols.

Lopez-Hilfiker et al., Atmos Meas Tech, 2019, 4867.

Techniq ue	Time resolution	Molecular resolution	Fragmentatio n
ESI-MS*	Hours (off- line)	High	Minimal
AMS*	Seconds to minutes	Low	High due to El
TD- CIMS*	Minutes to hours	High	Medium (high temperature)
EESI-MS	Seconds	High	Minimal

Red: Bad; Yellow: Neutral; Green: Good

*ESI-MS: Electrospray ionization MS; AMS: Aerosol MS; TD-CIMS: Thermodesorption chemical ionization MS.

PAUL SCHERRER INSTITUT

SOA formation under different NOx conditions

- SOA mass first increases and then decreases with increasing photochemical age.
- SOA production varies between experiments.

SOA formation normalized by VOCs

- Open and stove burning are very similar after normalization.
- High-NOx condition slightly increases the SOA formation.

PAUL SCHERRER INSTITUT

• Using measured VOCs to calculate SOA

Bruns et al., Sci Rep, 2016, 27881.

Measured VOCs can only explain 10-20% of the formed SOA in the OFR, very different from previous smog chamber study.

Background \gg Methods \gg SOA formation \gg SOA composition \gg Summary

Using measured VOCs to calculate SOA

Possible reasons:

- OFRs and smog chambers have different photochemical ages.
- > The contribution of unmeasured low-volatility compounds (e.g., IVOCs).

PAUL SCHERRER INSTITUT

SMPS vs AMS vs EESI

- AMS and SMPS have very similar trend in SOA concentration.
- EESI is slightly different, likely due to different sensitivities of different category of products.

PAUL SCHERRER INSTITUT

Carbon and Oxygen distribution

PAUL SCHERRER INSTITUT

Average C#, O#, and O/C

The lower C# and higher O/C under high-NOx condition is observed for all photochemical ages.

PAUL SCHERRER INSTITUT

FE Average O/C

- No significant difference between open and stove burning.
- Higher O/C under high-NOx condition.

PAUL SCHERRER INSTITUT

Clustering analysis

- 12 clusters based on k-means clustering analysis.
- They evolve differently with increasing photochemical age.

PAUL SCHERRER INSTITUT

Clustering analysis – O# vs C#

Later-generation products have lower C# and higher O#.

PAUL SCHERRER INSTITUT

Clustering analysis – H/C vs O/C

Later-generation products have lower H/C and higher O/C.

Background Methods SOA formation SOA composition Summary

PAUL SCHERRER INSTITUT

Conclusion and outlook

- Measured VOCs cannot explain the observed SOA production in OFR. Likely due to the contribution of IVOCs.
- High-NOx condition enhances O/C of SOA by reducing carbon number (molecular size).
- Using EESI-MS, we can track the molecular information of different generation of products in the oxidation of biomass burning emissions.

Outlook:

- Using other techniques (e.g. VOCUS PTR-MS) to quantify IVOCs and their contributions to SOA production.
- Performing PMF analysis with EESI and AMS data, and compare with the clustering analysis results.

Acknowledgments

- Andre Prevot
- Imad El Haddad
- David Bell
- Jun Zhang
- Jay Slowik
- Tiantian Wang
- John Liggio
- Laboratory of Atmospheric Chemistry (LAC, PSI)
- Swiss National Science Foundation (SNSF)
- Marie Sklodowska-Curie PSI-Fellow

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Supplementary Slides

LF-OFR

- CFD simulation indicates that the velocity in LF-OFR is generally uniform.
- The residence time distribution (RTD) is similar to that of ideal laminar flow.
- The H₂SO₄ yield from SO₂ oxidation is ~100%, significantly higher than other OFRs.

