

Liberté Égalité Fraternité ONERA

THE FRENCH AEROSPACE LAB

The UNREAL (Unveiling nucleation mechanism in aircraft engine exhaust and its link with fuel composition) project: Results from simulation chamber and oxidation reactor experiments

I.K. Ortega, M.Cazaunau, A. Farah, A. Singh, N. Karoski, R. Barrellon-Vernay, J. Duplissy, A. Bergé, J. Brito, A. Berthier, D. Delhaye, J.-E. Petit, A. Albinet, M. Sicard, Y. Carpentier, B. Raepsaet, F. Ser, M. Kulmala, V. Riffault, C. Focsa, and J.F. Doussin

This document and the information contained herin is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.

Context

Aviation sector emissions

- Sector in expansion before COVID19 ۲
- Big concern about aviation emissions air quality and climate
- Emissions reduction: use of sustainable aviation fuels ۲ (Synthetic kerosene, low CO_2 fuels, hydrogen...)

Number of passengers

(millions)

-35% to -65%

Decline in the number of

passengers in 2020'

5 000

4 500

4 000

3 500

2 0 0 0

500

Covid-19

Financia

crisis

Terrorist

attack

(11/09)

Asian

Context : Aircraft engine emissions

Unveiling Nucleation mechanism in aiRcraft Engine exhAust and its Link with fuel composition

- Project funded by ANR (1/1/2019 to 31/12/2022)
- Main objectives:
 - To determine the mechanism behind vPM formation in the engine exhaust and if there is a link with fuel composition
 - To establish a sampling protocol for vPM measurements that can be used in certification processes
 - To determine the impact of fuel chemical composition on the physico-chemical properties of vPM and nvPм

Liquid CAST generator (Jing Itd.)

- Able to work with any liquid fuel
- Fuel impact on emissions well captured respect other combustion sources
- Emissions chemical composition close to the one found in real engines
- Low fuel consumption (10 ml per hour of test)
- Jet A-1, AtJ, AtJ / Jet A-1 blend 30:70

RÉPUBLIQUE FRANCAISE Ubent Buttini Buttini The FRENCH AEROSPACE LAB

CESAM chamber

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIOUE

FRANCAISE

- 4.2 m³ stainless steel atmospheric simulation chamber.
- Evacuable down to a few 10⁻⁷ atm
- Temperature controlled between +15° C and +60° C
- High power xenon arc lamps which provide realistic sun irradiation
- Long lifetime for submicron particles (up to 4 days)
- Controlled RH
- Equipped with a comprehensive sets of analytical instruments

6

Potential Aerosol Mass – Oxidation Flow Reactor

- Small dimensions (13 L) and transportable oxidation reactor
- Continuous flow conditions (dynamic system)
- Controlled RH
- Aging from 1 to 30 days in about 1 min (using OH reactivity)
- Connected to comprehensive sets of analytical instruments with automated switching before and after aging

Experimental set-up, Atmospheric chamber

Experimental set-up, PAM flow reactor

Experimental set-up

Experimental set-up

Experimental protocol

- Limit of soot amount in the chamber to avoid contamination
- Two types of experiments:
 - Injection of gases gases (HEPA filter)
 - Sequential injection gases and then soot
- Injection under dark conditions, lights on after stabilization
- PAM experiment in parallel mainly with soot + gases (only 2 runs with gases only)
- Fuel tested: Jet A-1, AtJ, AtJ / Jet A-1 blend 30:70

PRELIMINARY Results, Gas only injection (FCE + SMPS)

Size (nm)

PRELIMINARY Results, Gas only injection (FCE)

(uu)

Size

PRELIMINARY Results, Gas only injection (FCE + SMPS)

CONERA REPUBLIQUE FRANÇAISE Libert Samanar The FRENCH AEROSPACE LAB

Size (nm)

PRELIMINARY Results, Gas + soot injection (SMPS)

RÉPUBLIOUE

THE FRENCH AEROSPACE LAB

FRANCAISE Égalité Fraterait

Injection of gases only followed by 10 s injection of soot + gases (Jet A-1)

Lights on after stabilization

- Just after lights were switched on, increase in mass but not in number \rightarrow condensation on soot
- Around 12 min after lights on, particle number increases \rightarrow vPM formation
- vPM formed are small \rightarrow no significant ۲ contribution to total mass

PRELIMINARY Results, Gas only PAM flow reactor

Background particles coming from the line

Particles formed after PAM (~1.2 x10⁴ 1/cm³)

Results summary

• We observed particle formation with all fuels gas only experiments for chamber and PAM

 We observed as well particle formation in some cases with Soot + gases

 AtJ produces almost 3 times more particles than Jet A-1(gas only experiments)

• Suplementary slides

Second UNREAL campaign, Fuel Matrix

Fuel	Aromatic content (%)	Sulfur content (ppm)
Jet A1 ref	16	4
Jet A1 High aro	23	4
Jet A1 High S	16	3000
Jet A1 High aro & S	23	3000
Jet A1 (A1)	15,5	200
AtJ (B1)	0	0
Jet A1/AtJ blend (E5)	10,8	140

