STUDY OF SOOT PRODUCTION IN ETHYLENE PYROLYSIS USING A SECTIONAL MODEL

24th ETH-Conference on Combustion Generated Nanoparticles June 22-24, 2021 – Online Conference

Leonardo PACHANO Damien AUBAGNAC-KARKAR

Background

• Objective and target conditions

• Soot modeling approach

Results

Summary

Nanoparticle formation from hydrocarbons oxidation and pyrolysis

- Of interest for the development of more efficient processes for nanoparticle synthesis
- Crucial for suppressing <u>undesirable soot emissions</u> that might impact the environment and human health

Background

• Objective and target conditions

Soot modeling approach

Results

OBJECTIVE AND TARGET CONDITIONS

Modeling soot production in <u>ethylene pyrolysis</u> using a <u>sectional approach</u> Long-term objective: Assessment in CFD pyrolyzing spray cases

- **PFR**: Soot concentration, PAH, ethylene and acetylene mole fraction at long residence times
- Shock tube: Time-resolved soot volume fraction and acetylene mole fraction

	PFR [1]	ST [2]
Experiment type	Plug flow reactor	Shock tube
X _{fuel}	0.03	0.0235
Diluent	Nitrogen	Argon
T [K]	1223-1423	2179
<i>P</i> [<i>P</i> a]	$1.01x10^5$	$3.80x10^5$
Time [<i>ms</i>]	~10 ³	~101

SOOT MODELING APPROACH

Pachano Prieto, L. M. (2020). CFD modeling of combustion and soot production in Diesel sprays (Doctoral dissertation).

Adapted from: J. Warnatz, U. Maas, and R. W. Dibble. Combustion. Vol. 4. Berlin: Springer, 2006

Zero-dimensional simulations using Cantera and a Sectional Soot Model (SSM) [1,2] Modeled collisional phenomena and surface chemistry Processes increasing soot mass **Nucleation** Condensation PAH PAH PAH

Reference numerical setup			
Gas phase coupling	Two-way		
Nucleation model	Reversible with dampening factor		
Condensation model	Reversible		
Solver	Cantera 2.5.0a3		

[1] Aubagnac-Karkar, D., Michel, J. B., Colin, O., Vervisch-Kljakic, P. E., & Darabiha, N. (2015). Sectional soot model coupled to tabulated chemistry for Diesel RANS simulations. Combustion and Flame, 162(8), 3081-3099. [2] Aubagnac-Karkar, D., El Bakali, A., & Desgroux, P. (2018). Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method. Combustion and Flame, 189, 190-206.

SOOT MODELING APPROACH

Pachano Prieto, L. M. (2020). CFD modeling of combustion and soot production in Diesel sprays (Doctoral dissertation).

Adapted from: J. Warnatz, U. Maas, and R. W. Dibble. Combustion. Vol. 4. Berlin: Springer, 2006

Soot surface growth Gas-phase mechanism mechanism

Zero-dimensional simulations using Cantera and a Sectional Soot Model (SSM) [1,2] Modeled collisional phenomena and surface chemistry Processes acting on the number of particles Coagulation Agglomeration **Reference numerical setup** Gas phase coupli

[1] Aubagnac-Karkar, D., Michel, J. B., Colin, O., Vervisch-Kljakic, P. E., & Darabiha, N. (2015). Sectional soot model coupled to tabulated chemistry for Diesel RANS simulations. Combustion and Flame, 162(8), 3081-3099. [2] Aubagnac-Karkar, D., El Bakali, A., & Desgroux, P. (2018). Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method. Combustion and Flame, 189, 190-206.

Gas phase coupling	Two-way	
Nucleation model	Reversible with dampening factor	
Condensation model	Reversible	
Solver	Cantera 2.5.0a3	iP <i>Energies</i> nouvelles

SOOT MODELING APPROACH

Pachano Prieto, L. M. (2020). CFD modeling of combustion and soot production in Diesel sprays (Doctoral dissertation).

Adapted from: J. Warnatz, U. Maas, and R. W. Dibble. Combustion. Vol. 4. Berlin: Springer, 2006

Zero-dimensional simulations using Cantera and a Sectional Soot Model (SSM) [1,2] Modeled collisional phenomena and surface chemistry

Processes increasing soot mass

Surface growth

$$C_2H_2 + \bigcirc = \bigcirc$$

Reference numerical setup			
Gas phase coupling	Two-way		
Nucleation model	Reversible with dampening factor		
Condensation model	Reversible		
Solver	Cantera 2.5.0a3		

 Aubagnac-Karkar, D., Michel, J. B., Colin, O., Vervisch-Kljakic, P. E., & Darabiha, N. (2015). Sectional soot model coupled to tabulated chemistry for Diesel RANS simulations. Combustion and Flame, 162(8), 3081-3099.
Aubagnac-Karkar, D., El Bakali, A., & Desgroux, P. (2018). Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method. Combustion and Flame, 189, 190-206.

OUTLINE

Background

• Objective and target conditions

• Soot modeling approach

Results

Gas-phase mechanism

- PAH mole fraction results without soot modeling
- Choice of gas-phase mechanism inconclusive based on PAH results

Mechanism	Ref.
NORINAGA	[1]
KM2	[2]
CHERNOV	[3]
TAO	[4]

[1] Norinaga, Koyo, and Olaf Deutschmann. Industrial & engineering chemistry research 46.11 (2007): 3547-3557.

[2] Wang, Yu, Abhijeet Raj, and Suk Ho Chung. Combustion and flame 160.9 (2013): 1667-1676.

[3] Chernov, Victor, et al. Combustion and Flame 161.2 (2014): 592-601. [4] Tao, Hairong, et al. Fuel 255 (2019): 115796.

Experimental results from:

1.4

1e3

1.3

T [K]

Sánchez, Nazly E. Estudio de la formación de hidrocarburos aromáticos policíclicos (hap) en la pirólisis de acetileno y etileno. Diss. Universidad de Zaragoza, 2014.

Appel, J., Bockhorn, H., & Frenklach, M. (2000). Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combustion and flame, 121(1-2), 122-136.
Hwang, J. Y., & Chung, S. H. (2001). Growth of soot particles in counterflow diffusion flames of ethylene. Combustion and flame, 125(1-2), 752-762.

12 Experimental and modeling reference (Ref.) results from:

Sánchez, Nazly E. Estudio de la formación de hidrocarburos aromáticos policíclicos (hap) en la pirólisis de acetileno y etileno. Diss. Universidad de Zaragoza, 2014.

Energies nouvelles

Gas-phase mechanism

Gas-phase mechanism

- Soot source terms for nucleation (ω_{nuc}), surface growth (ω_{sg}) and condensation (ω_{cond})
- Minimum ω_{sg} level required to induce a difference in the amount of soot produced
- Negligible effect on nucleation
- Increased relevance of condensation reversibility with the increase of surface growth

Gas-phase mechanism

- General lower PAH concentration when soot modelling is accounted for (as expected)
- Larger discrepancies with experimental data without condensation reversibility

Energies nouvelles

ST RESULTS

Experimental results from: Utsav, K. C., Mohamed Beshir, and Aamir Farooq. Proceedings of the Combustion Institute 36.1 (2017): 833-840.

- Reference results without soot modeling
 - Slower initial increase in C_2H_2 mole fraction profile
- Setup 1: Soor volume fraction (f_v) under-prediction in line with PFR results
- Setup 2: Fitted A for PFR case over-estimates C_2H_2 addition
- Setup 3: Reasonable results despite under-prediction of soot onset

			•
	Setup 1	Setup 2	Setup 3
A	80	2500	80
Surface growth mechanism	$C_{soot} + H \rightleftharpoons C_{soot}^* + H_2$ $C_{soot}^* + H \rightarrow C_{soot}$ $C_{soot}^* + C_2 H_2 \rightarrow C_{soot} + H$		HACA + $C_{soot} + C_2 H \rightarrow C_{soot}^* + C_2 H_2$ $C_{soot} + CH_3 \rightarrow C_{soot}^* + CH_4$ $C_{soot} + C_3 H_3 \rightarrow C_{soot}^* + AC_3 H_4$

OUTLINE

Background

• Objective and target conditions

• Soot modeling approach

Results

Summary

● PAH results were not conclusive for the choice of the gas-phase mechanisms → Assessment complemented by fuel and acetylene concentration predictions

● Acetylene and soot predictions emphasize the importance of capturing the carbon balance between soot and the gas-phase → Soot surface growth mechanism is crucial to that end

Additional steps added to the HACA mechanism [1,2] proved to enhance results both in the PFR (1.01x10⁵ Pa, 1223 – 1423 K) and ST (3.80x10⁵ Pa, 2179 K) cases

 Condensation reversibility improve PAH agreement with experimental data although large discrepancies still remain

Appel, J., Bockhorn, H., & Frenklach, M. (2000). Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combustion and flame, 121(1-2), 122-136.
Hwang, J. Y., & Chung, S. H. (2001). Growth of soot particles in counterflow diffusion flames of ethylene. Combustion and flame, 125(1-2), 752-762.

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

