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Outline

➢ Scientific background- Fuel Reforming
➢ Experimental setup- DI ICE fed with H2, CH4, and reformate

➢ Results:
➢ Engine performance
➢ pollutant emission 
➢ Particle emission

➢ Underexpanded jet characteristics
➢ Summary
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Fuel energy distribution

Coolant

Output

Exhaust

400 oC < TExhaust < 900 oC

About 1/3 of 
the energy 
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The goal
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Waste heat recovery
Methanol - alternative 

(renewable) fuel

Hydrogen combustion
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High-Pressure ThermoChemical Recuperation

Thermo-Chemical 
Recuperation (TCR)

✓Primary alternative (renewable)  and 
low-carbon intensity liquid fuel

✓Waste heat recovery process

✓ On-board hydrogen production

✓ Hydrogen combustion

✓Ultra-low pollutant emissions

Methanol Steam Reforming (MSR)

CH3OH+H2O → 3H2+CO2         ΔH≈50 kJ/mol Tartakovsky L., Sheintuch M., Veinblat M., 
Thawko A., Patent pending, 2019
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High-pressure ThermoChemical Recuperation
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➢ 19%-30% relative increase in indicated efficiency
➢ A reduction in NOx, CO, HC and CO2 emissions by up to 

97, 91, 96 and 15%, respectively  

Single cylinder, spark ignition engine (Robin EY-20 based)

Bore x Stroke, mm 67x52

Displacement, cm3 183

Compression ratio 6.3

Power, kW @ speed, rpm 2.2 @ 3000

Fuel supply system
Gasoline Carburetor

Hydrogen-Rich Reformate Direct injection

Poran, Thawko et al., Int. J Hydrogen Energy, 2018
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Total particle concentration comparison

MSR

CH3OH+H2O → 3H2+CO2 

Thawko et al., Int. J Hydrogen Energy, 2019

170% increase in 

particle emission



8

Particle size distribution – different oils

Particle diameter, Dp[nm]
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Gasoline High-load
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(a) Oil 1 (mineral) (b) Oil 2 (synthetic)

➢ Higher specific PN concentration for all particle size with the reformate 

Thawko et al., SAE Technical paper 2020-01-2200
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Total particle concentration comparison

Singh et al., Fuel ,2016

Previous studies showed significant PN reduction with hydrogen combustion

Why?
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Experimental setup- Research engine

Single cylinder, Petter AD1 based

Bore x Stroke, mm 80x73

Displacement, cm3 367

Compression ratio 15-17.3

Power, kW @ speed, rpm 5.3 @ 3000

Fuel injection system
Direct

Port

 

H2

CH4

MSR

300 0C

120 0C
EEPS
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Particle formation- Direct vs Port Fuel Injection

➢ Increased particles formation for direct 

injection

➢ Excessive lubricant involvement in the 

combustion

Thawko et al., Int. J Hydrogen Energy, 2019

Reformate fuel
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Particle formation - ignition timing effect 

➢ Advanced ignition – increase in PN concentration

➢ Higher In-cylinder pressure followed by lower 

flame quenching distance

➢ More Lubricated surface exposed to flame

Thawko et al., Int. J Hydrogen Energy, 2019

Reformate fuel
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Gaseous fuel DI- fuel type effect on engine performance

➢ Engine CR=15.5, WOT

➢ HP-TCR system efficiency is higher than hydrogen fuel

➢ Advanced EOI is favored because of better Fuel-air 
mixing

➢ HRR is affected by the EOI timing for hydrogen and
methane

➢ The MSR has a long injection duration, thus no
effect on HRR

System efficiency IMEP= 5.5 bar
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Gaseous fuel DI- fuel type effect on pollutant emission

➢ CO pollutant is near-zero emission 

for MSR and hydrogen fuel 

➢ CO2 emission for MSR fuel is from the 
injected reformate composition

➢ NOx pollutant is near-zero emission 

for MSR due to CO2 presence
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Particle formation in DI-ICE fed with hydrogen-rich 
reformate- Possible mechanisms

➢ Hydrogen low quenching distance

➢ Jet-wall impingement 

➢ Lubricant vapor entrainment into the gaseous jet

Stoichiometric 
ratio

Kim et al. (2001)

Rogers et al. (2015)
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Underexpanded jet flow field- single nozzle exit injector

➢ Fundamental investigation at ICE typical conditions

➢ Goal:

➢Study of the transient free jet behavior, prior to jet-wall 
interaction

➢ Detailed flow field characteristics

➢ Method:

➢Schlieren & PIV technique for the near- and far-field 
characterization, respectively

Crist S. et al., AIAA J., 1966 Snedeker RS. et al., J. Fluid Mechanics, 1971

Classification Nozzle pressure ratio (NPR)

Subsonic jet 1 < 𝑃0/𝑃∞ < 1.893

Moderately underexpanded 

jet 
2.08 < 𝑃0/𝑃∞ < 3.8

Highly underexpanded jet 3.84 < 𝑃0/𝑃∞
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Near-field structure- Jet type characterization

➢ Jet type transition from subsonic 

to underexpanded jet

Thawko et al., physics of fluid, 2021 (under review)

https://technionmail-my.sharepoint.com/personal/andythawho_campus_technion_ac_il/Documents/seminar/SchlierenImaging.mp4
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Far-field characterization- mean temporal evolution 

Vorticity
Swirling 
strength

Radial 
velocity

Axial 
velocity

Steam 
lines

➢ Two stage jet development

➢ Inner shear layer appears during stage II

➢ NPR rise result in a change of radial velocity 

direction at jet centerline

➢ Excessive air entrainment encouraged by 

the leading vortex

I

II

Thawko et al., physics of fluid, 2021 (under review)



19

Summary

➢ DI-ICE with High-Pressure Thermo-Chemical Recuperation was developed enabling:

➢ Efficiency improvement (up to 30%) compared to gasoline counterpart

➢ Gaseous pollutant emission reduction (up to 97%, 91% and 96% for NOx, CO and HC, 
respectively) 

➢ Excessive particle formation with gaseous DI method

➢ The mechanism of Lubricant vapor entrainment into the jet was demonstrated

➢ Future research- improving the fuel-air mixing of direct injection method
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