

Technion Internal **Combustion Engine**

Particle emission from direct injection internal combustion engine fed with various gaseous fuels

Andy Thawko, Michael Shapiro and Leonid Tartakovsky

June 23rd, 2021

24th ETH Conference on Combustion Generated Nanoparticles

Outline

- Scientific background-Fuel Reforming \succ
- Experimental setup- DI ICE fed with H₂, CH₄, and reformate \geq
- **Results**: \succ
 - Engine performance \geq
 - pollutant emission \geq
 - Particle emission \geq
- Underexpanded jet characteristics
- Summary \succ

Fuel energy distribution

The goal

High-Pressure ThermoChemical Recuperation

Thawko A., Patent pending, 2019

High-pressure ThermoChemical Recuperation

Total particle concentration comparison

Particle size distribution – different oils

Higher specific PN concentration for all particle size with the reformate

(a) Oil 1 (mineral)

(b) Oil 2 (synthetic)

Thawko et al., SAE Technical paper 2020-01-2200

Total particle concentration comparison

Previous studies showed significant PN reduction with hydrogen combustion

Experimental setup- Research engine

Single cylinder, Petter AD1 bas	ed]	S
		_	'
Bore x Stroke, mm	80x73		
Displacement, cm ³	367		_
Compression ratio	15-17.3		
Power, kW @ speed, rpm	5.3 @ 3000		
Fuel injection system	Direct	H ₂	0
	Port	CH ₄	
		MSR	
Intake valve Gas Injector	309		
Exhaust valve Spark plug			

Particle formation- Direct vs Port Fuel Injection

Increased particles formation for direct

injection

Excessive lubricant involvement in the

combustion

Thawko et al., Int. J Hydrogen Energy, 2019

Particle formation - ignition timing effect

- Advanced ignition increase in PN concentration
 - Higher In-cylinder pressure followed by lower flame quenching distance
 - More Lubricated surface exposed to flame

Gaseous fuel DI- fuel type effect on engine performance

- Engine CR=15.5, WOT
- > HP-TCR **system** efficiency is higher than hydrogen fuel
- Advanced EOI is favored because of better Fuel-air mixing

- HRR is affected by the EOI timing for hydrogen and methane
- The MSR has a long injection duration, thus no effect on HRR

Gaseous fuel DI- fuel type effect on pollutant emission

Particle formation in DI-ICE fed with hydrogen-rich reformate- Possible mechanisms

- Hydrogen low quenching distance
- Jet-wall impingement
- Lubricant vapor entrainment into the gaseous jet

Underexpanded jet flow field- single nozzle exit injector

Crist S. et al., AIAA J., 1966

Near-field structure- Jet type characterization

- Jet type transition from subsonic
 - to underexpanded jet

Thawko et al., physics of fluid, 2021 (under review)

Far-field characterization- mean temporal evolution

- Two stage jet development
- Inner shear layer appears during stage II
- NPR rise result in a change of radial velocity direction at jet centerline
- Excessive air entrainment encouraged by the leading vortex

Summary

- > DI-ICE with High-Pressure Thermo-Chemical Recuperation was developed enabling:
 - **Efficiency improvement** (up to 30%) compared to gasoline counterpart
 - Gaseous pollutant emission reduction (up to 97%, 91% and 96% for NOx, CO and HC, respectively)
- > Excessive particle formation with gaseous DI method
- > The mechanism of Lubricant vapor entrainment into the jet was demonstrated
- > Future research- improving the fuel-air mixing of direct injection method

Acknowledgments

תוכנית האנרגיה ע״ש גרנד

Grazie mille! Merci beaucoup! 非常感谢您!

どうもありがとう! Большое спасибо!

شکر ا لکم! תודה רבה! Тхьэуегъэпсэу!

Vielen Dank! Muchas gracias! 대단히 감사합니다! बहुत बहुत धन्यवाद ! Puno vam hvala! Σας ευχαριστώ πολύ! Dziękuję Ci!

Thank you for your attention!

Andy Thawko

Technion – Israel Institute of Technology

Grand Technion Energy Program

Email: Andythawho@technion.ac.il