

Virtual Sensor for Soot Emissions in Heavy Duty Diesel Engines using alternative Fuels

ETH Conference on Combustion Generated Nanoparticles 21.06.2022

virtual sensor technology

www.vir2sense.com

- Introduction / Motivation
- Modelling approach
 - Soot
 - Ignition & Combustion
- Alternative Fuels
- Results
- Summary and Conclusions

Introduction / Motivation

- Alternative energy carriers offer a beneficial CO2 footprint and show different combustion properties
- An engine setting optimization for alternative fuels offers the potential for a well-to-wheel CO2 reduction, which is as well addressed to the fuels CO2 footprint reduction (well-totank) as due to an increase in engine efficiency (tank-to-wheel)
- The high degree of freedom of operating settings provides the opportunity but also increase the complexity of an optimization and require models for combustion and emission

Phenomenolocigal Soot Model

Parts:

 Soot formation -f(dQ_{diff}/d ϕ , p, T, fuel characteristics)

•Balance: formation, oxidation 2

 Soot Oxidation f(reactions kinetics (i.e T and global O_2), 3) turbulence (i.e local O_2 / OH))

> Result: EC mass concentration

Challenges:

High ratio of exhaust vs max. in cylinder soot concentration causes high sensitivity of errors Spinoff EnHzürich

4

Combustion Model / Soot Model Input Requirements

• Ignition delay model

- Important to separate premixed and mixing controlled combustion portion
- Accuracy difficult due to cross sensitivity of chemical (reaction kinetics, fuel characteristics) and physical (mixing, spray characteristics) processes
- Heat release Model
 - Separate model for premixed and mixing controlled combustion
 - Accurate mixing speed resp. characteristic mixing rate crucial for subsequent emission models

Engine Operation and Fuels Tested

- 4 liter heavy duty single cylinder supercharged common rail research diesel engine
- Engine operating conditions set to cover a wide spread of operating condition variation (in total 60 individual operating points for each fuel)
- Representatives of paraffinic fuels and a representative of oxygenated fuel has been selected
- Fuel blends with various blending ratios to understand nonlinearities in fuel blends

	Diesel	GTL20	GTL	OME15	OME7	HVO20	HVO	R100
Composition	100% Diesel	80% Diesel 20% GTL	100% GTL	85% Diesel 15% OME	93% Diesel 7% OME	80% Diesel 20% HVO	100% HVO	77% HVO 18% OME 5% Alcohol
LHV [MJ/kg]	43.5	43.57	43.8	39.89	41.89	43.6	43.8	38.61
Denstiy [kg/m^3]	827	817.3	778.3	859.9	842.3	817.6	780.2	820.9
CN [-]	56.1	61.1	82.4	<60	<57	61.2	82.8	75.1
Aromatics [wt%]	22.8	18.2	<0.1	19.4	21.2	8.3	<0.2	<0.2
Oxygen [wt%]	0	0	0	8.19	3.83	0	0	>8.19
Well-to-Tank CO2 red. [%]	0	n/a	n/a	9	4	18	90	~88

Combustion characteristics: Heat Release Rate

HRR:

- Overall only apparently minor differences
- Changes in Cetane number lead to significantly decreased premixed portion in all cases with high paraffinic fuel content (HVO, GTL, R100)
- Late phase combustion is particularly faster for the oxygenated fuels (OME, R100)

Combustion characteristics: Characteristic Mixing Rate

$1/\tau_{mix}$:

• $1/\tau_{mix}$ characterizes the diffusion combustion.

 $\frac{1}{\tau_{mix}(t)} = \frac{HRR_{diff}(t)}{Q_{inj} - \int_{SOC}^{t} HRR(t) dt} -$ combustion rate available fuel

 $\tau_{mix} = \tau_{evap} + \tau_{diff} + \tau_{ign}$

• τ_{mix} is a good proxi for the residence time in the hot combustion zone and therefore important for emission formation

Results: Soot with Diesel Parameters

- All cases have the same engine model, but individual settings for HRR model; soot model constants are taken for diesel
- Results show the pure effect of fuel composition on soot emissions
 - Lower aromatic content reduces emissions
 - Higher oxygenated portion reduces emissions

Results: Soot with Tuned Parameters

- Soot production and oxidation multiplier parameters fitted to each fuel's measurements
 - Variation of soot emission characteristics with different fuels allowed the determination of individual effects of composition on soot formation and oxidation
 - Production term decreases linearly with increasing non-paraffinic content
 - Oxidation term increases quadratically with increasing oxygenate content

Soot Model Parameters

Barro et al. SAE 2014-01-2839

Summary & Conclusions

- Modelled prediction of HRR, NOx and soot very accurate for a wide range of conditions and different fuels:
 - Variable load (λ), fuel pressure, SOI, EGR, rpm
 - Fuels: combinations of Diesel (0-100%), GTL/HVO (0-100%) and OME (0-20%)
 - Only few parameters required to be adapted to change from one fuel to another
 - Relation between model parameter and fuel composition explored
 - Parameter adaptation inline with fuel composition (i.e. aromatic content / oxygen content)
- Final result is a fully tuned model for combustion, NOx and soot emissions for variable fuel composition, capable of being used for:
 - Off-line tuning of engine parameters
 - Determination of improvement of efficiency using different fuels with adaptive parameter settings
 - Possibility for onboard optimization for different fuel compositions
 - Models can be used as virtual sensors and only require inputs, typically available on the ECU
- Details of full engine optimization can be found on:

https://www.aramis.admin.ch/Default?DocumentID=67587&Load=true

Acknowledgments

- Scientific contribution
 - Co-Author, Colleagues from ETH, EMPA and combustion and flow solutions
- Financial support
 - Federal office of Energy, Neste
- YOU
 - For your kind attention

virtual sensor technology

Collaborators:

