HELMHOLTZ MUNICI)

Mechanism underlying nanoparticle exposure triggered herpesvirus reactivation and translational study into epidemiological cohort

Lianyong Han Research Group Dynamics of Pulmonary Inflammation Institute of Lung Health and Immunity, Comprehensive Pneumology Center (CPC) Helmholtz Zentrum München, Germany

June 23, 2022, ETH conference 2022

NP triggered virus reactivation assessed by lytic MHV-68 protein detection

Light-sheet fluorescence microscopy (LSFM):

Overview of MHV-68 lytic viral protein expression in whole lung lobes, during acute infection (day6) and CNP triggered reactivation at latency (day28 + day1)

Acute infection

The localization of herpesvirus reactivation in lung

Main population of macrophages in lungs

Light sheet imaging of whole lung lobes (*black CNP particle disturbs imaging*):

LPS induce herpesvirus reactivation in **CD11b+ infiltrating cells**

> NP exposure triggers lytic MHV-68 protein expression in CD11b+ infiltrating macrophages

Immunofluorescence staining for MHV-68 lytic proteins plus cell specific markers uncovers co-localization with **CD11b+** (infiltration monocytes/macrophages)

Most lytic MHV-68+/CD11b+ cells are also positive for other markers of inflammatory recruited monocytes / macrophages (**GPNMB, ARG1, IBA1**) but not tissue resident macrophages.

> NP exposure triggers lytic MHV-68 protein expression not in CD11c+ alveolar macrophages

Lung tissue

BAL cells

CD11c anti-MHV-68 DAPI

Mechanism of NP triggered gammaherpesvirus reactivation ?

Persistently MHV-68 infected (CD11b+) macrophage cell line (Ana-1/MHV-68) as model for reactivation

*

LPS

DWCNT

Lytic virus protein expression

CNP & DWCNT trigger mitogen associated protein kinase (MAPK) signaling in Ana-1/MHV-68 cells

Time course of MAPK activation

Investigating transcriptomic changes by **Affymetrix Microarray analysis**

No characteristically pro-inflammatory polarization of macrophages by CNP/CNT exposure!

NPs stimulate MAPK pathways in Ana1-BMDMs but no pro-inflammatory signature

- CNPs induced reactivation depends on p38 MAPK signaling

SB203580 inhibits p38 signaling

Plaque assay, 72 h

In vivo experiment setup

Pretreatment with p38-MAK inhibitor SB203580 reduces CNP induced gammaherpesvirus reactivation in the lung of mice

Lytic viral protein staining shows SB203580 reduces CNP triggered herpesvirus reactivation in lung

Human relevance?

Translation of animal experimental data into epidemiological cohorts

Holger Annette Schulz Peters

- **KORA:** Cooperative Health Research in the Augsburg Region, a population-based adult cohort study in the Region of Augsburg, Southern Germany with 2,278 participants in the second follow-up FF4 (2013/14).
- Particulate matter < 2.5 μm (PM 2.5), nitrogen dioxide (NO2), particle number concentration (PNC)
- Epstein-Barr virus (EBV), Human Herpesvirus 6 (HHV6) and Cytomegalovirus (CMV)

Association of high HHV6-titers with high particle number concentration (PNC)

- 1. High Human Herpesvirus 6 (HHV-6) titer is associated with high environmental particle number concentration (PNC).
- 3. In the murine MHV-68 model, CNP induced MHV-68 reactivation, mainly localized to CD11b+ infiltrating macrophage-like cells.
- 3. CNP triggered MHV-68 reactivation via a p38 MAPK dependent signaling, and protective p38 inhibition significantly attenuated

MHV-68 reactivation induced by CNP, and potentially serves as therapeutic target of exacerbations of CLDs.

HELMHOLTZ MUNICI

Generated by Figdraw (www.figdraw.com)

Acknowledgement

Dynamic of inflammatory lung diseases, LHI

Dr. Tobias Stöger Verena Haefner; David Kutschke; Anna Fuchs Prof. Dr. Markus Rehberg; Qiongliang Liu; Chenxi Li; Hongyu Ren, Christine Sattler; Youjia Yu

Institute of Asthma and Allergy Prevention Prof. Dr. Heiko Adler Beatrix Steer Anna Dmitrieva Fenja Prüfer Ursula Rmbold

Institute of Experimental Genetics (IEG)

Prof. Dr. Johannes Beckers Dr. Martin Irmler

Animal caretaker in Großhadern and Neuherberg

Institute of Epidemiology (EPI) Prof. Dr. Annette Peters

Prof. Dr. Holger Schulz Dr. Claudia Flexeder

Research Unit Analytical BioGeoChemistry (BGC)

Prof. Dr. Philippe Schmitt-Kopplin Franco Moritz

Core Facility Pathology and Tissue Analytics

Dr. Annette Feuchtinger

Microscopy Core in IES, HMGU

Dr. Andreas Ettinger

Thank you.