

Norbert Heeb Empa, Überlandstrasse 129 Advanced Analytical Technologies CH-8600 Dübendorf Phone +41-58-765 42 57 e-mail norbert.heeb@empa.ch Internet http://www.empa.ch

25th ETH Conference on Combustion Generated Nanoparticles Online, June 21-23, 2021

New legislation to guide the world: Where are we now and in which direction should we go?

Mobility is a necessity since Homo Sapiens Sapiens left the trees, move in the savanna and lives in cities

New legislation to guide the world: Where are we now and in which direction should we go?

Mobility is a necessity since Homo Sapiens Sapiens left the trees, move in the savanna and lives in cities

Agenda

The world motorization degree on the rise

Global trends, the trends in Switzerland

Success and failure of past legislation

Success with TWCs and DPFs, failures with deNOx

New legislation and new approaches

Toxicity-based, cell-models, multi-media models

Trends on planet earth

From 310 to 400 ppm in 60 years

Trends of the Swiss road traffic

Trends of the Swiss road traffic

Swiss vehicle legislation: From U.S.- to Euro-based legislation

From 65 down to 1 g CO/km, form 8.2 to 0.1 gTHC/km, from 4.7 to 0.06 gNOx/km

Limits for gasoline vehicles (1974-2019)

Standard	Stage	Entry into effect ¹	Measurement cycle	Emission limit values						
				CO [g/km]	NMHC [g/km]	THC [g/km]	NO _x [g/km]	THC+NO _x [g/km]	PM [mg/km]	PN [#/km]
ECE 15	ECE 15.00	01.1974	ECE 15	30-65	-	5.1-8.2	-	-	-	-
	ECE 15.01	09.1975	ECE 15	24–52	-	4.3-7.0	-	-	-	-
	ECE 15.02	10.1977	ECE 15	24–52	-	4.3-7.0	3.0-4.7	-	-	-
	ECE 15.03	10.1980	ECE 15	19–42	-	3.8-6.2	2.5-4.0	-	-	-
AGV	AGV 82	10.1982	FTP 72	24.20	-	2.10	1.90	-	-	-
	AGV 86	10.1986	FTP 72	9.30	-	0.90	1.20	-	-	-
FAV 1	FAV 1–1	10.1987	FTP 75	2.10	-	0.25	0.62	-	-	-
TAFV 1	EURO 2	10.1995/96	NEDC	2.20	-	-	-	0.50	-	-
	EURO 3	01.2000/01	NEDCm	2.30	-	0.20	0.15	-	-	-
	EURO 4	01.2005/06	NEDCm	1.00	-	0.10	0.08	-	-	-
	EURO 5	09.2009/10	NEDCm	1.00	0.068	0.10	0.06	-	5.0/4.5 ^{2, 3}	-
	EURO 6	09.2014/15	NEDCm	1.00	0.068	0.10	0.06	-	5.0/4.5 ^{2, 3}	TOX

 Tab. 2
 > Emission limit values for petrol-driven passenger cars (induced ignition)

1 First date: valid for the homologation of new vehicle types. Second date: valid for initial entry into circulation of new vehicles.

² Limits for particle mass for induced ignition engines only apply to vehicles with direct injection.

³ Revised measurement procedure to be introduced before the limit of 4.5 mg/km is implemented.

⁴ New measurement procedure to be introduced before the limit is implemented.

⁵ For vehicles with induced ignition engines with direct injection, a limit value for particle number s to be specified before 1 September 2014.__

2014-2017 6x10e12 #/km >2017 6x10e11 #/km

Only GDI with PN limit!

Emissions of Swiss road traffic

In 40 years from 35 down to 2 g/km

Emissions of the Swiss road traffic

Trends on planet earth

"You'll never drive alone"

The majority of the world population:

- lives in urbanized areas
- is exposed to combustion-engine exhausts
- suffers from heat waves due to rising temperatures especially in cities

Decarbonization of the mobility sector is needed to break these trends

New legislation to guide the world: Where are we now and in which direction should we go?

Mobility is a necessity since Homo Sapiens Sapiens left the trees and have to move in the savanna

Agenda

The world motorization degree on the rise

Global trends, the trends in Switzerland

Success and failure of past legislation

Success with TWCs and DPFs, failures with deNOx

New legislation and new approaches

Toxicity-based, cell-models, multi-media models

Will diesel technology survive?

21st ETH-Conference on Combustion Generated Nanoparticles

Focus Event: Will Diesel Technology Survive?

June 19th – 22nd, 2017 ETH Zurich, Switzerland www.nanoparticles.ethz.ch

21st ETH Conference on Combustion Generated Nanoparticles Zürich, June 19-22, 2017

Mean annual NO₂ levels: City of London

The NO₂ problem in central London is severe, as it is in many European cities!

Mean annual NO₂ levels: City of London

From a Swiss perspective, the NO₂ problem is even more severe!

Mean annual NO₂ levels: City of London

The new WHO air quality guideline will be a major challenge for all cities!

From chassis dynamometer to on-road measurements

Appearance and reality are far apart! Diesel NOx 10x higher than gasoline vehicles

NOx-emissions of gasoline- & diesel-vehicles

Chen & Borken-Kleefeld Atm. Env. 2014, 88, 157-164

The NOx-problem of diesel vehicles is 20 years old – that's the scandal

Can diesel solve its NO_x problem in time?

Appearance and reality are far apart! Another 15 years to wait?

NO_x-emissions of diesel-vehicles

The NOx-problem of diesel vehicles is 20 years old – that's the scandal

Diesel deNOx on roads: The blue technology was not green enough

How They Did It: An Analysis of Emission Defeat Devices in Modern Automobiles

How they did it?

sendegate

Moritz Contag^{*}, Guo Li[†], Andre Pawlowski^{*}, Felix Domke[‡], Kirill Levchenko[†], Thorsten Holz^{*}, and Stefan Savage[†]

* Ruhr-Universität Bochum, Germany, {moritz.contag, andre.pawlowski, thorsten.ho
 [†] University of California, San Diego, {gul027, klevchen, savage}@cs.ucsd.
 [‡] tmbinc@elitedvb.net

Moritz Contag, Andre Pawlowski, Torsten Holz, Ruhr-Univer

Guo Li, Kirill Levchenko, UC San Diego

Felix Domke, Leibzig

Contag et al. 38th IEEE Symposium (2017) 231-250, How They Did It: Defeat Devices in Modern Automobiles

Diesel deNOx on roads: The blue technology was not green enough

How they did it? – The Fiat approach, work on NOx regeneration or not

Fig. 5: NO_x regeneration release logic combining the start and release signals from the homologation and real driving logic to compute the single regeneration release signal stRlsDNO_x. Demand and release conditions are computed separately for the homologation and real driving logic ①. The output of the Kind_of_Request block is non-zero if either of the homologation or real driving signals is true ②. The final release signal stRlsDNO_x is only asserted ③ if either the homologation or real driving release signals is true. Blue numbers ① through ③ added by authors. From function sheet EDC17C69 P 1264 for Fiat 500X. Copyright Robert Bosch GmbH.

Diesel deNOx on roads: The blue technology was not green enough

What can we learn from "diesel-gate" with respect to new legislation

- Chassis dynamometer measurements are not enough

- Cycle beating (optimization) was a problem
- Engine-control units were manipulated to deactivate deNOx-systems (defeat devices)
- On-board diagnostics is not enough

New periodical technical inspection (NPTI) is needed

Pascal Buerkenhoudt: Cleaner air due to vehicle approval or vehicle inspection?

New converter technology, new risks for secondary pollutants

Filtration of soot is not sufficient to lower the genotoxicity of diesel exhaust

Soot-catalyzed chemistry

Soot-catalyzed chemistry

Soot-catalyzed nitration of PAHs

Soot-catalyzed nitration of PAHs

From harmless pyrene to mutagenic 1-nitro-pyrene?

pyrene

0.8 nm

Yes nitro-PAHs do form, but can also be converted in catalytic DPFs

1-nitro-pyrene

1.85 nm (1/10 of a primary soot particle)

Metal-catalyzed dioxin formation in DPFs

Metal-catalyzed dioxin formation in DPFs

Heeb. et al. Env. Sci. Techn., 2013, 47, 6510-6517

Heeb. et al. Env. Sci. Techn., 2015, 49, 9273-9279

Attempted assassination of Viktor Yushchenko, former President of the Ukraine

What happened during the 2004 presidential election campain in the Ukraine?

Before and after the severe dioxin poisoning

Sector Contraction of the sector sect

Yes, Victor Yushchenko was poisend with 2,3,7,8-TCDD

Sorg, O., Zennegg, M. Schmid, P. et al. The Lancet, **2009**, 9696, 1179-85

Urea-based SCR – various reactive nitrogen species (RNCs) on board

But sometimes just out of order

Currently the most efficient deNOx system for diesel engines

Urea-based SCR – various reactive nitrogen species (RNCs) on board

Various steps to decompose and hydrolyze urea and to reduce NO and NO₂!

Per ton of NO to be reduced, one needs at least 1 ton of urea!

$$2 \text{ NO} + O_2 \implies 2 \text{ NO}_2$$
 (1

$$2 \text{ NH}_{3} + \text{NO} + \text{NO}_{2} \longrightarrow 2 \text{ N}_{2} + 3 \text{ H}_{2}\text{O} \quad (2) \longleftarrow$$

$$4 \text{ NH}_{3} + 4 \text{ NO} + \text{O}_{2} \longrightarrow 4 \text{ N}_{2} + 6 \text{ H}_{2}\text{O} \quad (3)$$

 $8 \text{ NH}_3 + 6 \text{ NO}_2 \longrightarrow 7 \text{ N}_2 + 12 \text{ H}_2 \text{ (4)}$

$$CO(NH_2)_2 \longrightarrow NH_3 + HNCO$$
 (5)

HNCO + $H_2O \longrightarrow NH_3 + CO_2$ (6)

Simplified reaction scheme, quite complex chemistry

Secondary pollutants of DeNO_x-technologies

Heeb et al. Atm. Env. 40 (2006) 3750-3763 Heeb et al. Atm. Env. 40 (2006) 5986-5997 Livingston et al. Atm. Env. 43 (2009) 3326-3333 Heeb et al. Atm. Env. 42 (2008) 2543-2554

There are no limits for NH₃ despite relevant emissions!

Secondary pollutants of DeNO_x-technologies

There are no limits for HNCO despite relevant emissions!

Heeb et al. Atm. Env. 45 (2011) 3203-3209

Success and failure of past legislation

Current exhaust legislation is not effect-based!

Implementation of transient, real-world driving cycles

Optimization (cycle-beating), re-programming of ECUs, defeat-devices

Challenging emission limits favored implementation of catalytic converters

Success with TWCs and DPFs, failures with diesel deNOx

Combination of catalytic converter technologies is complex

New risks for secondary pollutants

Good legislation and challenging emission limits are keys to cleaner exhausts and promote the implementation of better technology

New legislation to guide the world: Where are we now and in which direction should we go?

Mobility is a necessity since Homo Sapiens Sapiens left the trees and have to move in the savanna

Agenda

The world motorization degree on the rise

Global trends, the trends in Switzerland

Success and failure of past legislation

Success with TWCs and DPFs, failures with deNOx

New legislation and new approaches

Toxicity-based, cell-models, multi-media models

New legislation and new approaches

Current exhaust legislation is not effect-based!

Specific legislation for toxic compounds

Toxicology-based legislation, differentiation of harmfuel and harmless

Assess new mass technologies and fuels comprehensively

Toxicological and environmental risks

Specific legislation for toxic compounds

What is toxic should be regulated at the emission source, workplace and ambient

Specific legislation for toxic compounds

Some examples

- Toxicology-based occupational health legislation
- Exposure levels and time, maximum workplace concentrations
- Precautionary principle, also in the Swiss chemicals legislation

In vitro-cell culture models – powerful tools to assess exhaust toxicity

3D-human cell model of the epithelial airway barrier

Macrophages (from human blood) Bronchial epithelial cells (16HBE14o- cell line) Dendritic cells (from human blood)

Rothen-Rutishauser et al., 2005. Am. J. Resp. Cell Mol. Biol

Rat hepatoma cell models (ER- & DR-CALUX)

Adverse effects on humans - From cells to organs, organism and populations

Adverse effects on animals and humans

OECD, ENV/JM/MONO 6 (2013)

New legislation to guide the world: Where are we now and in which direction should we go?

Mobility is a necessity since Homo Sapiens Sapiens left the trees and have to move in the savanna

Agenda

The world motorization degree on the rise

Global trends, the trends in Switzerland

Success and failure of past legislation

Success with TWCs and DPFs, failures with deNOx

New legislation and new approaches

Toxicity-based, cell-models, multi-media models