

25th ETH-Conference on Combustion Generated Nanoparticles June 21-23, 2022

Enhancement in Performance Parameters and Reduction in Exhaust Emissions of a Compression Ignition Engine using Stable Nanofuel Suspension

Akshat Jain, Anirudha Ambekar, Thaseem Thajudeen

School of Mechanical Sciences, IIT Goa

Indian Institute of Technology Goa

Introduction

MatoomMi, "Girl Wearing N95 Air Pollution Mask, "Vector Stock. https://www.vectorstock.com/royalty-free-vector/girl-wearing-n95-air-pollution-mask-for-protect-vector-25090852.

Sonwani, S. et al., "Inhalation Exposure to Atmospheric Nanoparticles and Its Associated Impacts on Human Health: A Review". Frontiers, Sustainable Cities 3, 1–20 (2021).

Research Outline

Experimental Set-up

- Variable compression ratio (VCR) engine details:
- Single-cylinder, 4-stroke engine
- Common rail diesel injection (CRDI) mode
- Compression ratio (CR) = 20
- Engine Speed = 1100±5 RPM
- Nanofuel samples preparation:
- Aluminium oxide (Al₂O₃) nanoparticles added to diesel.
- Surfactant span80 (sorbitan monooleate)
- Magnetic stirring (MS) helps in uniform mixing of nanofuel suspension.
- Nanofuel samples naming:
 - > DA1000 (1000 ppm of Al_2O_3 + Diesel)
 - DA1000Sp0.2% (1000 ppm of Al₂O₃ + 0.2% wt. of Span80 + Diesel)
 - > DA50Sp0.01% (50 ppm of $Al_2O_3 + 0.01\%$ wt. of Span80 + Diesel)
 - > DA100Sp0.02% (100 ppm of $AI_2O_3 + 0.02\%$ wt. of Span80 + Diesel)
- <u>AVL gas analyser 444N</u> Measurements of exhaust gases.

VCR engine set-up

Nanofuel Stability – Particle Stabilization

Size analysis using Dynamic Light Scattering (DLS):

Plot of light intensity scattered (%) w.r.t. particles' size (d, in nm) for 2 samples; (a) Al₂O₃ added to diesel: DA1000, (b) Al₂O₃ added to diesel and span80 solution: DA1000Sp0.2%; on 0th day and 5th day.

Nanofuel Stability – Particle Size Reduction

Size analysis using Dynamic Light Scattering (DLS):

Plot of light intensity scattered (%) w.r.t. particles' size (d, in nm) for 4 nanofuel samples; (a) DA1000Sp0.2% no_BM_BS, (b) DA1000Sp0.2% no_BM, BS, (c) DA1000Sp0.2% BM, no_BS, (d) DA1000Sp0.2% BM+BS; on 5th day [BM – ball-milling, BS – bath sonication]

Results and Discussion – Performance & Emission Characteristics

Brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) w.r.t. brake power (BP) for: (a) Neat diesel, (b) $50ppm-Al_2O_3$ nanofuel (DA50Sp0.01%), and (c) $100ppm-Al_2O_3$ nanofuel (DA100Sp0.02%) [@1100±5 RPM, CR = 20, CRDI mode] Hydrocarbon (HC) and Nitrogen Oxides (NOx) emissions w.r.t. brake power (BP) for: (a) Neat diesel, (b) $50pm-Al_2O_3$ nanofuel (DA50Sp0.01%), and (c) $100ppm-Al_2O_3$ nanofuel (DA100Sp0.02%) [@1100±5 RPM, CR = 20, CRDI mode]

Conclusion

- The concept of blending nano-additives (NAs) to liquid fossil fuel is a promising way as it leads to the improvement in combustion performance and emission characteristics of the engine.
- Stability of nanofuel suspension (diesel blended with Al₂O₃) has been studied using DLS.

Percentage	Improvement in	engine par	rameters usi	ing Al ₂ O ₃	nanofuel as	compared	to neat diesel
	-						

Parameters	DA50Sp0.01%	DA100Sp0.02%
BTE	(↑) 4.1% - 6.6 %	(↑) 5.7% - 8.3 %
BSFC	(↓) 4.3% - 6.9%	(↓) 7.1% - 9.5%
HC emissions	(↓) 3.6% - 8.9%	(↓) 7.2% - 20.7%
NOx emissions	(↓) 3.4% - 11.2%	(↓) 4.5% - 18.1%

 Currently, the focus is on the measurements of ultrafine particles (UFPs) and particulate matter (PM) from the exhaust pipe of the engine, to study the effect of nano-additives.

Acknowledgement

Centre of Excellence in Particulates, Colloids and Interfaces (CoE-PCI), IIT Goa

Ministry of Education for 'Prime Minister Research Fellowship (PMRF)'

Thank you