

CMA Comprehensive Molecular Analytics

Evaluation of aerosol emissions from a marine diesel engine using a wet sulfur scrubber and filtration system for exhaust gas abatement

(Project SAARUS: Optimization of scrubber technology for reduction of environmentally harmful ship emissions)

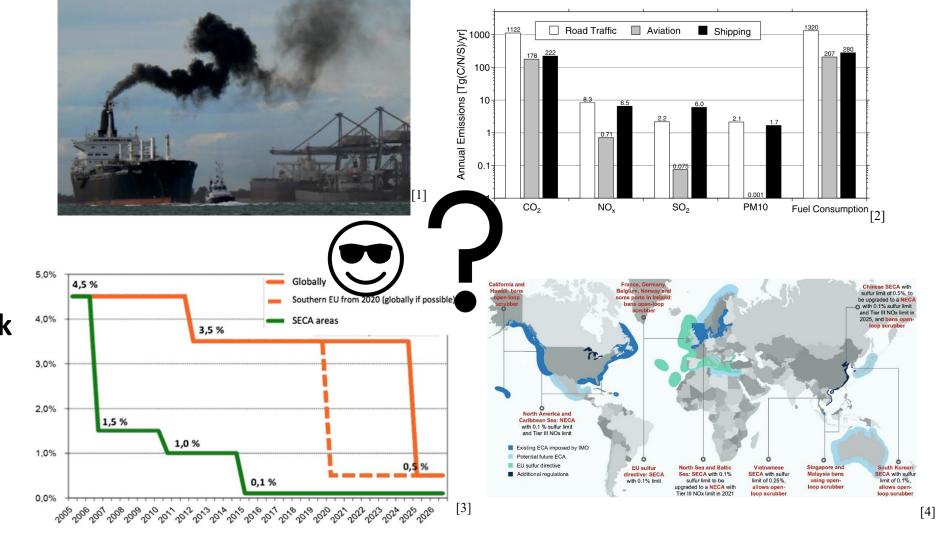
25th ETH Conference on Combustion Generated Nanoparticles

21.06.2022

Seongho Jeong^{1,2}, Jan Bendl³, Uwe Käfer^{1,2}, Prof. Thomas Adam³, Prof. Ralf Zimmermann^{1,2}

² Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, 18059 Rostock, Germany

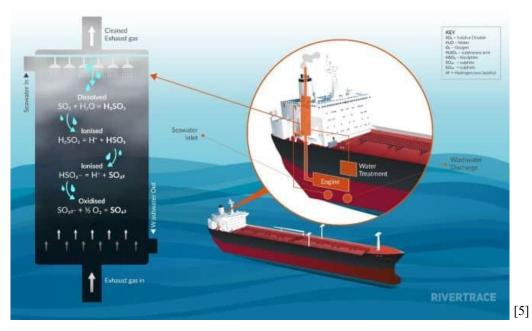
³ University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, 85577, Neubiberg, Germany

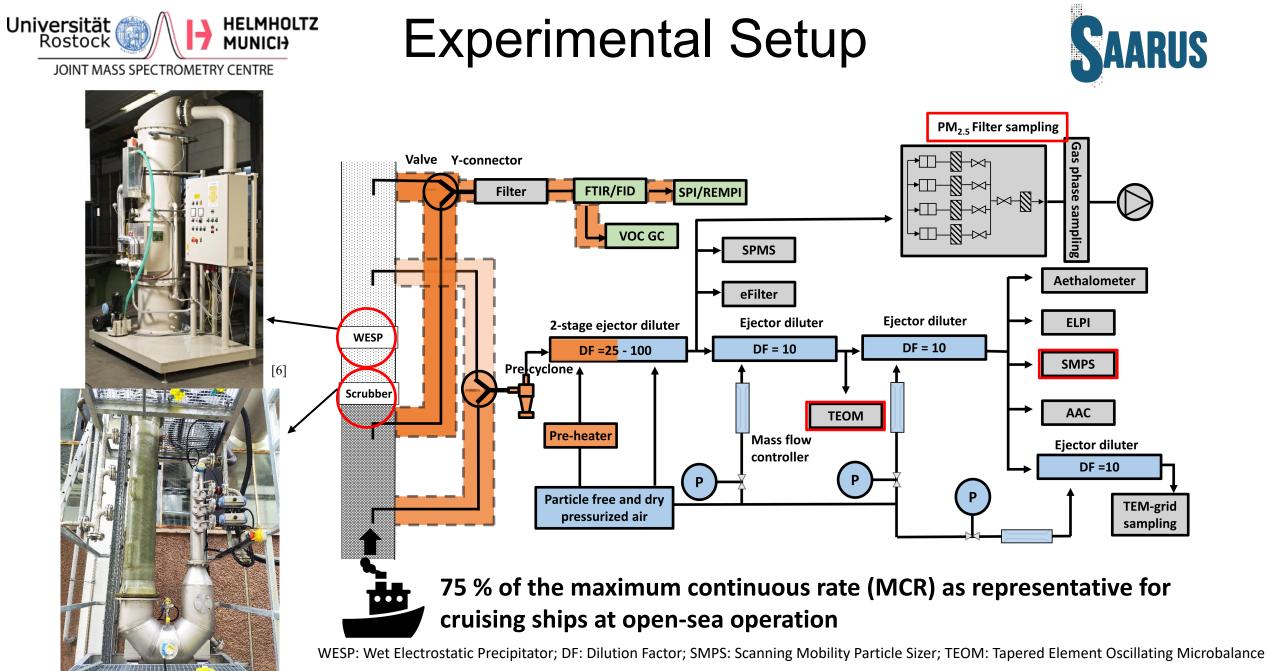

¹ Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Department Environmental Health, Helmholtz Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

Agenda & Background

- Background
- Experimental setup
- Results
- Summary & Outlook

[1] https://www.klapton.com/publications/new-imo-sulphur-emission-regulation-just-around-the-corner/ [2] Erying et al. *Journal of Geophysical research* V110 D17305 (2005) [3] Berggvist et al. *Eur. Transp. Res. Rev.* 7:10 (2015) [4] Zhao et al. *Transport Research Part D* V90 102641 (2021)




Background

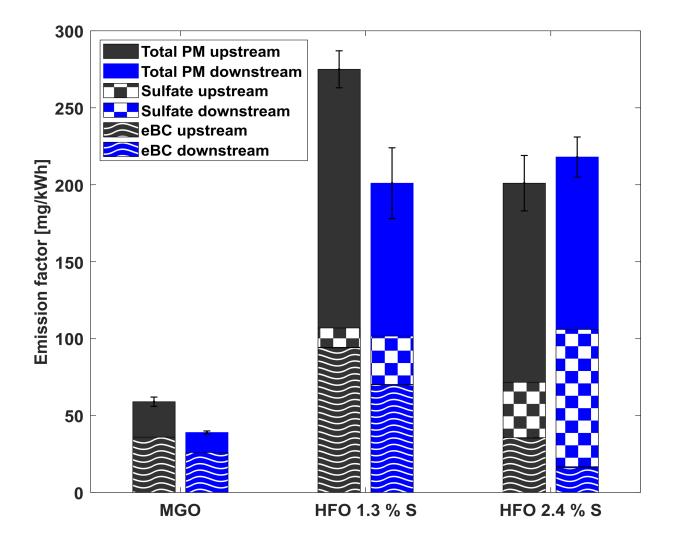
- Scrubber as abatement system for ship emission
- SO_2 reduction $SO_2(g) + H_2O \rightleftharpoons H_2SO_3$ $H_2SO_3 \rightleftharpoons H^+ + HSO_3^ HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$ $2SO_3^{2-} + O2 \rightleftharpoons 2SO_4^{2-}$
- Possible reduction of particulate matter (PM) by Scrubber
 Size of PM
- Type of fuel and scrubber
- Salinity of wash water
- Sampling methods
- ✤ Objectives:
- Investigation of ship emission from different fuel types (marine gas oil (MGO), heavy fuel oils (HFOs))
- Reduction of fine particulate matter (PM_{2.5}) regarding number and mass concentration by a wet scrubber
- Investigation for further optimization to reduce ship emission

[5] https://vpoglobal.com/2020/01/16/rivertrace-smart-esm-granted-dnv-gl-statement-of-compliance/

[6] Bologa et al. IEEE Transactions on Industry Applications 45 (6) (2009)

Change of particle mass

Total particle mass [mg/kWh]

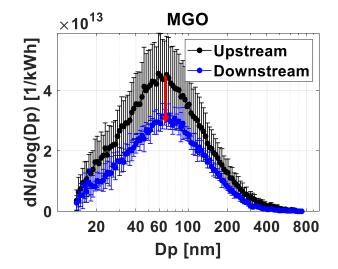

	Upstream	Downstream
MGO	60	39
HFO 1.3 % S	275	200
HFO 2.4 % S	200	218

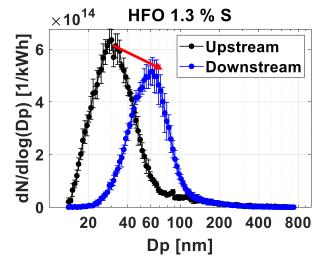
Sulfur as sulfate [mg/kWh]

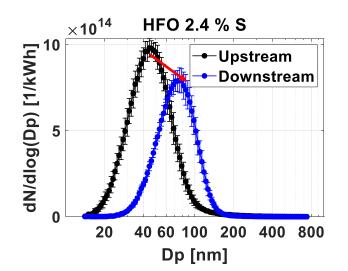
	Upstream Downstrea		
MGO	0	0	
HFO 1.3 % S	13	31	
HFO 2.4 % S	36	89	

Equivalent Black Carbon [mg/kWh]

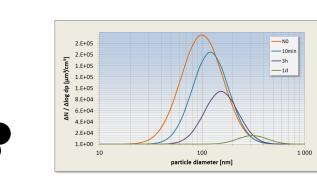
	Upstream Downstream			
MGO	36	26		
HFO 1.3 % S	94	70		
HFO 2.4 % S	36	16		

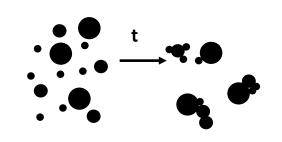



26.07.22



Change of particle number





Coagulation process in the scrubber

Mono-disperse coagulation

Poly-disperse coagulation

-> Further reduction of PM concerning particle number and mass needed!

[7] Karg et al. 11th Asian Aerosol Conference (2019)

26.07.22

[7]

Particle size distributions and mass emission factor with additional abatement systems

Contents lists available at Science	Direct		×10 ¹⁴			
Journal of Electrost	atics		8		─●─Upstream ─●─Downstream ─●─WESP	
Novel wet electrostatic precipitator for collection 2170 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL 45, NO Collection of Fine Particles by Nove Electrostatic Precipitator Andrei Bologa, Hanns-Rudolf Paur, Markus Lehner, Helmut Seifert, Thomas Wäscher,	. 6, NOVEMBER/DECEMBER 2009	⁸ dN/dlogDp [1/kWh]	6			
882 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL 41, NO. 4, JULY/AUGUST 2005	fine aerosol under favor- efficiencies greater than is limits the applications					
Pilot-Plant Testing of a Novel Electrostatic Collector for Submicrometer Particles Andrei M. Bologa, Hanns-Rudolf Paur, Helmut Seifert, and Thomas Wäscher	s. The collection of fine ers can be substantially the droplets and particles or submicrometer parti- be dry. The use of fabric ation, which is reliable, [6]		20	40 60 100 Dp [nm]	200 400 80 	00
Abstract—A novel electrostatic collector CAROLA (Corona <u>Aerosol</u> <u>Abscheider</u>) for gas cleaning from submicrometer particles	ation, which is reliable, [0]]	mg/kWh]	Upstream	Downstream	WESP
Tiefes is described. The CAROLA concept is based on particle charging by corona discharge and subsequent particle removal in the grounded part of the collector. CAROLA collectors for fine oil mists and for fly ash were tested. The influence of the operation control discharge was studied. It is shown that the CAROLA electrostatic collectors have high fractional removal efficiencies (>98% for particles >1 μ m) and 95% -98% for particles (CAROLA collector) is developed. In the CAROLA, fine particles are charged by the corona discharge and then removed in the grounded part of a for particles with sizes 0.3-1 μ m).		H	FO 2.4 % S	200	218	< 2

- Combining with a wet electrostatic precipitator (WESP)
- **Reduction of particle number > 98 %**
- **Reduction of particle mass > 99 %**

Abstract-Aerosol Absc ticles is desc charging by in the groun fine oil mist operation con that the CAI removal effic for particles kV), and low pressure drop (<200 Pa). The collection of charged particles without external electric field and the compact design provide a cost-effective solution for the removal of submicrometer particles from industrial off gases.

JOINT MASS SPECTROMETRY CENTRE

field-free collector. The results of the pilot-plant tests of the CAROLA electrostatic collector are discussed. The influence of the operation conditions on the corona discharge is investigated. The particle number concentration and the mass collection effi[9]

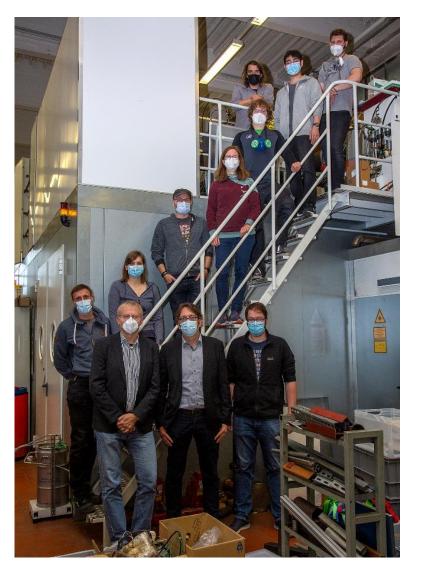
Index Terms-Corona discharge, electrostatic precipitator, sub- ciency of the pilot unit are determined. micrometer particles.

[8] Bologa et al. Journal of Electrostatics 67 150-153 (2009) [9] Bologa et al. IEEE Transactions on Industry Applications 41(4) (2005)

26.07.22

Universität Rostock

882


HELMHOLTZ

Seongho Jeong

Summary and Outlook

- Coagulation as one of the main interparticle mechanism in the scrubber
- Needs for further reduction of particle number and mass concentration after scrubber
- Accomplishment of significant reduction of particle emission by combining the scrubber with WESP
- Application of scrubber as pre-conditioner for WESP
- Possible application of reduced operation of WESP even for low-sulfur containing fuels at port/berth

CMA Comprehensive Molecular Analytics