21.06.2022

SERAP KARAHANOGULLARI

INSTITUTE FOR THERMODYNAMICS OF MOBILE ENERGY CONVERSION SYSTEMS & CENTER FOR MOBILE PROPULSION

THE EFFECTS OF THREE-WAY CATALYST SAMPLES ON PARTICULATE EMISSIONS FROM A SPARK IGNITED SINGLE CYLINDER ENGINE

cmp

25TH ETH-CONFERENCE ON COMBUSTION GENERATED NANOPARTICLES

MEASUREMENT PROCEDURE / SAMPLES

OSC: Oxygen storage capacity, exh: exhaust

TWC: three-way catalyst, Cell density [cpsi] / wall thickness : 400/4 mil

CLD (NO_x): chemiluminescence detector, NDIR (CO, CO₂): non-dispersive infrared detector, FID (HC): flame ionization detector, FTIR: Fourier-transform infrared spectroscopy,

H-Sense (H₂), EEPS: Engine exhaust particle sizer

2 | Karahanogullari, 21.06.2022

 $\ensuremath{\mathbb{C}}$ by TME – all rights reserved. Confidential – no passing on to third parties

MEASUREMENT PROCEDURE / SAMPLES

OSC: Oxygen storage capacity, exh: exhaust

Cell density [cpsi] / wall thickness : 400/4 mil

CLD (NO_x): chemiluminescence detector, NDIR (CO, CO₂): non-dispersive infrared detector, FID (HC): flame ionization detector, FTIR: Fourier-transform infrared spectroscopy,

H-Sense (H₂), EEPS: Engine exhaust particle sizer

3 | Karahanogullari, 21.06.2022

 $\ensuremath{\mathbb{C}}$ by TME – all rights reserved. Confidential – no passing on to third parties

MEASUREMENT PROCEDURE / SAMPLES

4 | Karahanogullari, 21.06.2022

© by TME – all rights reserved. Confidential – no passing on to third parties

MEASUREMENT PROCEDURE / SAMPLES

5 | Karahanogullari, 21.06.2022

© by TME – all rights reserved. Confidential – no passing on to third parties

High load engine operation \rightarrow higher mass flow \rightarrow higher space velocity \rightarrow more Pd-share of catalyst material increases the PN reduction

PN REDUCTION OVER THREE-WAY CATALYSTS

-100% Catalyst samples / Operation point

12R = catalyst heating engine operation 1200 1/min IMEP=3 bar, 20L = low load engine operation 2000 1/min IMEP=3 bar, 10H = high load engine operation 1000 1/min IMEP=12 bar, for all engine operations compression ratio=12,2, Fuel: RON95E10

6 | Karahanogullari, 21.06.2022

High load engine operation \rightarrow higher mass flow \rightarrow higher space velocity \rightarrow more Pd-share of catalyst material increases the PN reduction

PN REDUCTION OVER THREE-WAY CATALYSTS

12R = catalyst heating engine operation 1200 1/min IMEP=3 bar, 20L = low load engine operation 2000 1/min IMEP=3 bar, 10H = high load engine operation 1000 1/min IMEP=12 bar, for all engine operations compression ratio=12,2, Fuel: RON95E10

7 | Karahanogullari, 21.06.2022

© by TME – all rights reserved. Confidential – no passing on to third parties

Sub-15 nm particles \rightarrow remarkable reduction through state of the art catalyst with higher OSC and lower PGM

SAMPLE - STATE OF THE ART

Highest O_2 usage in comparison to other catalyst samples During lean \rightarrow almost all HC are oxidized

- During rich → highest CO usage through catalyst, higher HC oxidation → OSC and PGM effect
- Temperature of catalyst is the highest \rightarrow at ~480°C
 - during lean endothermic reactions
 - during rich exothermic

BTWC - 1 ATWC - 1

PGM : platinum group metals OSC: Oxygen storage capacity, CR: compression ratio

8 | Karahanogullari, 21.06.2022

Sub-15 nm particles \rightarrow remarkable reduction through state of the art catalyst with higher OSC and lower PGM

SAMPLE - STATE OF THE ART

Highest O_2 usage in comparison to other catalyst samples During lean \rightarrow almost all HC are oxidized

- During rich → highest CO usage through catalyst, higher HC oxidation → OSC and PGM effect
- Temperature of catalyst is the highest \rightarrow at ~480°C
 - during lean endothermic reactions
 - during rich exothermic

BTWC - 1 ATWC - 1

PGM : platinum group metals OSC: Oxygen storage capacity

9 | Karahanogullari, 21.06.2022

PGM loaded samples (orange and red) reduces more particles than just OSC and only cordierite sample

BTWC / ATWC COMPARISON

- The highest effect on particle emissions are on
 sub-30 nm particles → by high PGM loaded sample H2
- PGM loaded samples are better than w/o PGM loaded samples
- OSC enhanced PN reduction/oxidation

PGM : platinum group metals OSC: Oxygen storage capacity, BTWC: before TWC

The consideration of the mean values is not conclusive, therefore we observed the size classes in a time-resolved manner to see the behavior precisely

PGM loaded samples (orange and red) reduces more particles than just OSC and only cordierite sample

BTWC / ATWC COMPARISON

- The highest effect on particle emissions are on
 sub-30 nm particles → by high PGM loaded sample H2
- PGM loaded samples are better than w/o PGM loaded samples
- OSC enhanced PN reduction/oxidation

PGM : platinum group metals OSC: Oxygen storage capacity, BTWC: before TWC, ATWC: after TWC

The consideration of the mean values is not conclusive, therefore we observed the size classes in a time-resolved manner to see the behavior precisely

Thank you for your attention! Open for discussion!

M.Sc. Serap Karahanogullari Research Assistant

Phone +49 241 80 – 93490 karahanogullari@tme.rwth-aachen.de

Thermodynamics of Mobile Energy Conversion Systems – Forckenbeckstraße 4 – 52074 Aachen – Germany – www.TME.rwth-aachen.de

21.06.2022

SERAP KARAHANOGULLARI

INSTITUTE FOR THERMODYNAMICS OF MOBILE ENERGY CONVERSION SYSTEMS & CENTER FOR MOBILE PROPULSION

THE EFFECTS OF THREE-WAY CATALYST SAMPLES ON PARTICULATE EMISSIONS FROM A SPARK IGNITED SINGLE CYLINDER ENGINE

25TH ETH-CONFERENCE ON COMBUSTION GENERATED NANOPARTICLES

FVV PROJECT