

25th ETH-Conference on Combustion Generated Nanoparticles

June 21-23, 2022, Online Conference

Controlling the Sampling Parameters to quench Collision Growth of Soot Particles extracted from Laminar Premixed Flames

Farnaz Khosravi, Francesco Carbone

Department of Mechanical Engineering and Materials Science, University of Connecticut, Storrs, Mansfield, CT Center for Clean Energy Engineering, University of Connecticut, Storrs, Mansfield, CT

Financial support for this work is being provided by the USA National Science Foundation (Grant #CBET- 2013382, Prof. John Daily serving as Program Managers)

UCONN

Motivations

UCONN

Air Pollution

- Atmospheric visibility
- Climate change
- Cloud formation

Health

- Deposition in inhalation system
- Carcinogenic polycyclic aromatic hydrocarbons

Combustion device

- Loss of efficiency
- High maintenance
- Radiative heat transfer-heat transfer via radiation

Unravelling mechanisms of particle nucleation improves our ability to control Particulate Matter (PM) emissions

Challenges

UCONN

Quenching the sampling modifications

 $\hat{\mathbf{U}}$

Deeper understanding of gas to particle conversion

- As small as possible perturbation of the flame to be held constant in all measurements
- Controlled short residence time
- Infinite and instantaneous dilution
- Purposely charge the flame

Carbone et al.(2016), Aerosol Sci Tech Thomson and Mitra (2018), Science

Differential Mobility Analyzer Concept and Advantages

- Filters particles of chosen electrical mobility (size)
- Measures the Size Distribution Function (SDF)
- Ideal for nanoparticles (routinely as small as 2 nm but down to 0.65 nm with High-Resolution)
- No manipulation to the sample
- Need controlled charging of particles and molecules

Electrical mobility
$$\mathbf{Z} = \frac{U}{E} m^2 / Vs$$

de la Mora et al (2013), J. Aerosol Sci.

UCONN

Artifacts due to finite time to dilute and transport the sample to the DMA

UCONN

Previous Study:

UCONN

Previous Study:

Naturally charged by the flame

Pinhole Diameter	Sample Dilution Ratio (DR)	Aerosol residence time
0.15 mm	≈ 1800	108 ms
0.25 mm	≈ 660	

Collision charged via Kr₈₅ ion seeding

Pinhole Diameter	Sample Dilution Ratio (DR)	Aerosol residence time
0.08 mm	≈ 6200	
0.15 mm	≈ 1800	108 ms
0.25 mm	≈ 660	

Current Study:

For both Naturally and Collision Charged

Pinhole Diameter (mm)	Sample Dilution Ratio (DR)	Aerosol residence time
0.08	≈ 6200	99ms (A)
0.10	≈ 4300	53ms (A) 49ms (B)
0.15	≈ 1800	37ms (A) 33ms (B) 28ms (B)
0.25	≈ 660	

Experimental Method

UCONN

Naturally Charged - Effect of residence time

Configuration A with 100 µm probe

UCONN

• Key message: Independent residence time achieved by 50% reduction of residence time For configuration A

Naturally Charged - Effect of residence time

Configuration B with 100 µm probe

UCONN

• Key message: Using bypass flow at the DMA inlet for configuration B results in residence time independency

Naturally Charged - Effect of residence time

UCONN

Comparison at constant residence time of Configurations A and B with 100 µm probe

• Key message: Below 40ms of residence time the results are totally overlapped in both configurations **10**

Naturally Charged - Effect off dilution ratio

Configuration B with shortest residence time of $\Delta t = 28$ ms

UCONN

• Key message: SDF is independent of dilution ratio just up to 7.5mm

Collision Charged - Effect of residence time

Configuration A and B with 100 µm probe

UCONN

• Key message: In the case of collision charge, the shape of the measured SDFs is virtually independent of residence time when Δt is shorter than 40 ms

Collision Charged - Effect of dilution ratio

Configuration B with shortest residence time $\Delta t = 28$ ms

UCONN

• Key message: SDF is approximately independent of dilution ratio for the case of minimum residence time

Conclusion

In this study, we :

- Obtained the size distribution of naturally and collision charged particles for sizes smaller than 2nm
- Controlled the transport and charging residence time (Δt) independent of all other parameters
- Minimize the residence time to 28 ms
- Quenched the sample coagulation using residence time Δt below 40 ms
- Achieved dilution independent results for collision charged particles when the Dilution Ratio (DR) is larger than 4300 (with 28ms residence time)
- Reached dilution independent results for naturally charged at HAB≤7.5mm (particles smaller than 2.5nm) but not yet at HAB=10mm where the nanoparticles have larger number concentrations and sizes.