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Introduction

• Gasoline direct injection (GDI) engines are being widely adapted for light-duty 
vehicles

• Increased power output
• Higher efficiency
• Reduced CO2 emissions

• But GDI engines produce higher levels of PM and PN, especially lean burn engines
• Lean burn GDI

• Higher efficiency – approaching Diesel
• More difficult to control NOx emissions
• May have higher PM, PN emissions
• Limited applications in Japan , Europe
• Not used in US – stoichiometric burn only
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Engine and fuels

Model Number BMW N43B20
Displacement (cc) 1995
Bore x Stroke (mm) 84 x 90
Compression Ratio 12:1
Rated Power (kW) 125 @ 6700 rpm
Rated Torque (Nm) 210 @ 4250 rpm

Induction Naturally Aspirated
Injection Central Spray Guided Piezo

Max Rail Pressure (bar) 200

Table 1. Engine specifications. Fuel Aromatics (%) T90 (℃) EtOH (%)RON/MON (AKI)
E10 (Baseline) 27 162 9.9 96.2/85.4 (90.8)

E30 21 - 30 -
E50 15 - 50 -

Table 2. Fuel specifications. 
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Instruments

• Particle size distributions 
• TSI EEPS (5.6 to 560 nm) using soot inversion matrix
• Catalytic stripper to remove semi-volatile particles

• Black carbon  – AVL Micro Soot Sensor
• Effective density –

• Cambustion CPMA – TSI SMPS so called “reversed” method much faster
• TSI DMA – CPMA – CPC – traditional method validation check

• Solid particle mass and number by integrated particle size distribution 
(IPSD) method
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Experimental Setup

CPMA first, “reversed configuration”
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Adapted from Olfert, et al., JAS 37 (2006) 1840-1852
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Effective density and IPSD mass
• CPMA mass, m, and DMA mobility diameter, dm, used to find effective density.

• EEPS size distribution and effective density distribution used to find integrated size distribution 
(IPSD) mass
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Example of IPSD method – integrate the product 
of volume and density across the size distribution
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Calibration

• CMPA and DMA calibrated 
against 100, 125, 152, 203 
nm polystyrene latex (PSL) 
spheres

• Calibration checked by 
measuring density of  Di-
Ethyl-Hexyl-Sebacat (DEHS) 
particles, ρ = 0.914 g/cm3

• Apparent density increase at 
smaller size due to 
evaporation
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Effective densities of non-
volatile soot particles

• Fuels: E10, E30, E50
• S=stoichiometric 2000 RPM 7bar 

BMEP
• LH=Lean homogenous 2000 RPM 

7bar BMEP
• LS=lean stratified 2000 RPM 4bar 

BMEP
• Shaded areas uncertainty bands
• CPMA-SMPS and DMA-CPMA-

CPC configurations, lower right 
panel, agree within experimental 
error (± 3 %)
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Study Condition Aftertreatment Sample treatment Method Fuel Constant Dmm Dp [nm] rho [g/cm3]
Average of Idle, 4%, 13%, 26% E0 5.22 2.49 100 0.50
Average of Idle, 4%, 13%, 26% E10 5.54 2.48 100 0.51
Average of Idle, 4%, 13%, 26% E50 5.95 2.43 100 0.43

Average moderate load E10 6.00 2.45 100 0.48
Average high load E10 14.00 2.30 100 0.56

Average 60 kph, 0, 5, 10% rated power Thermal denuder 3.22 2.61 100 0.52

Average 60 kph, 0 , 5, 10% rated power None 4.28 2.56 100 0.57

Symonds et al., 2008 [add] ,   
1 engine, engine dyno

1000 rpm, 3.27 Bar BMEP 3-way cat None DMA-CPMA
EN228:2004 
compliant 
gasoline

3.29 2.65 100 0.66

Maricq and Xu, 2004 [30] ,    
1 vehicle, chassis dyno

Average 20, 40, 50, 60, 70 kph 3-way cat None DMA-ELPI
Indolene clear 

(E0)
15.70 2.30 100 0.63

High load average 2000-2500 rpm 5.5 bar BMEP 38.81 2.17 100 0.83

Low load average 2000 rpm 14 bar BMEP 38.43 2.21 100 1.01
Stoichiometric 2000 rpm 2 Bar BMEP NA 2.10 NA NA
Lean stratified 2000 rpm 2 Bar BMEP 47.88 2.12 100 0.83
Stoichiometric, 2000 rpm 7 Bar BMEP E10 10.94 ± 0.55 2.34 ± 0.02 100 0.52
Stoichiometric, 2000 rpm 7 Bar BMEP E30 9.25 ± 1.76 2.36 ± 0.04 100 0.49

Lean homogeneous, 2000 rpm 7 Bar BMEP DMA-CPMA E10 13.52 2.23 100 0.39
Lean homogeneous, 2000 rpm 7 Bar BMEP E10 13.42 ± 1.92 2.23 ± 0.03 100 0.39
Lean homogeneous, 2000 rpm 7 Bar BMEP E30 4.13 ± 0.25 2.54 ± 0.01 100 0.50
Lean homogeneous, 2000 rpm 7 Bar BMEP E50 5.59 ± 0.22 2.48 ± 0.01 100 0.51

Lean stratified, 2000 rpm 4 Bar BMEP E10 10.65 ± 0.99 2.29 ± 0.02 100 0.40
Lean stratified, 2000 rpm 4 Bar BMEP E30 6.39 ± 0.30 2.41 ± 0.01 100 0.42
Lean stratified, 2000 rpm 4 Bar BMEP E50 4.89 ± 0.43 2.49 ± 0.02 100 0.47

Olfert and Rogak, 2019 5.59 ± 0.09 2.48 ± 0.02 100 0.51

None

Universal effective density distribution

Summary of Effective Density Measurements for GDI Engines

This study,                                    
1 engine, engine dyno

None Catalytic stripper

CPMA-SMPS

CPMA-SMPS

E0

Graves et al., 2017 [24] ,       1 
engine, engine dyno

3-way cat Thermal denuder DMA-CPMA

Quiros et al., 2015 [31] ,        
2 vehicles, chassis dyno

3-way cat None DMA-CPMA

Commercial 
gasoline

Momenimovahed and Olfert, 
2015 [32],       Average of 5 

vehicles, chassis dyno
3-way cat DMA-CPMA

Zelenyuk et al., 2017 [10],     
1 engine, engine dyno

APM-SMPS3-way cat

Zelenyuk et al., 2014 [43],     
1 engine, engine dyno

APM-SMPSNoneNone
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Summary of Density Measurements, GDI Engines

3Dmm
eff mCdρ −=
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Non-volatile particle size distributions (EEPS)
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SPN23 and SPN (solid particle number > 23 and >6 nm, 
respectively) and MSS black carbon mass
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Comparison of BC mass and IPSD mass
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Comparison of BC mass and IPSD mass

For most of our tests IPSD mass is larger than MSS BC mass, 
with IPSD/MSS averaging about 1.3 but with values as high as 
1.7 for the LS condition, why?
• These ratios are higher than recently reported for GDI 

vehicles.
• Xue, et al., 2016, 4 vehicles, IPSD/MSS = 1.01 to 1.18, average 1.06
• Maricq. et al., 2016, 6 vehicles, IPSD/MSS average = 1.35

• IPSD mass includes all PM, soot, heavy semi-volatiles, ash
• MSS mass includes only black carbon

• MSS mass assumes light mass absorption cross section (MAC) is 
the same as calibration source

• Corbin, et al., 2022, show significant dependence of MAC on 
combustion conditions, particle size

• Maricq, 2014 reports low BC/EC ratio, MAC, for immature soot
• Malmborg, et al., 2021, reports immature soot in high EGR Diesel
• Injection strategy used with LS mode may produce lower MAC soot From Corbin, et al., 2022
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Summary

• Effective densities of particles from GDI engines fall in relatively narrow range
• The “universal form” is reasonable approximation in the absence of direct measurements

• Fuel ethanol content strongly influences SPN and BC
• Decreasing them for S and LS conditions
• Increasing them for LH condition

• This lean burn GDI forms broad non-volatile particle size distributions with little distinct 
modal structure

• The ratio non-volatile IPSD mass to MSS BC mass is greater than 1, especially for the LS 
condition where it is 1.5-1.7, suggesting that the MAC for these particles is lower than for 
MSS calibration particles (CAST burner)

( )2.48 35.59eff dmρ −=
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Thank you – questions?
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References for density measurements
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