

Flame, Aerosol, and Nano Technologies Laboratory (FANTastic Lab)

flamenanoaerosol.wordpress.com

25th ETH-Conference on Combustion Generated Nanoparticles June 21-23, 2022, Online Conference

IN-SITU CHARACTERIZATION OF CATALYST NANOPARTICLES FROM REACTIVE SPRAY DEPOSITION TECHNOLOGY (RSDT)

EVANGELOS K. STEFANIDIS, Thomas A Ebaugh, Stoyan Bliznakov, Leonard Bonville, Radenka Maric, Francesco Carbone, University of Connecticut

Reactive Spray Deposition Technology (RSDT) UCDNN

One-step flame-based process which is used in fuel cell, electrolyzer, and battery catalyst layer manufacturing

- □ Synthesized nanoparticles < 10nm
- Process optimization could be accelerated by in-situ measurements (e.g. particle size distribution, number concentration)

Yu et al., 2014, *J. Electrochem. Soc.*, *161*, F622 Roller et al., 2013, Electrochim. Acta, 107, 632-655

RSDT Setups Flames under investigation

UCONN

- Two pairs of flames with different liquid fuel flowrates
- The two flames of the pairs differ only on the presence and the absence of the precursor (PtAcAc) in the solution
- □ The average image of the flame is utilized to measure the flame length

 $L_{edge} = 145 \ mm$

Laser Diagnostics **Optical Layout**

 \geq

UCONN

Static Scattering

Scattering Coefficient

UCONN

Decrease of the scattering coefficient as the nanoparticles are convected downstream of the flame due to dilution in the surrounding gases

Laser Induced Incandescence

UCONN

6

LII signal comparison

LII spectral emission decreases at increasing distance from the fuel nozzle, L

Nanoparticle vaporization temperature achieved by laser heating (e.g., ~5200 K at L=150mm in Pt-type2) increases at increasing L

Volume Fraction

Volume fraction decay

We introduce an equation to estimate the volume fraction that predicts the results of LII measurements. The exponential law is typical of (turbulent) diffusion mixing

7

UCONN

In-situ Laser Diagnostics

Particle size

- □ The LS equivalent diameter of Pt-Type 2 is larger than the one of Pt-Type 1
- The results are consistent regardless of the assumption on the oxidation degree of the synthesized particles
- □ The LS equivalent diameter is consistent with the HAADF-STEM image analysis in both cases (Pt-Type 1 and Pt-type 2)

Ex-situ Particle Size Distribution (PSD)

Bimodal distribution

Bimodal distribution with first and second mode median diameter positioned at 0.95nm and 6.05nm regardless of the Pt flame type

- Number concentration of the second mode in the Pt-Type 2 flame is larger than in Pt-Type 1 resulting in larger d_{6,3} measured via LS
- □ The sum of the same two log-normal fits microscopy results in both flames

UCONN

Particle Size Distribution

PSDs per unit total mass

UCONN

- □ Same modes are inferred at all Ls from the d_{6,3} measured by LS
- □ The number of particles in the second mode increases as the nanoparticles are convected downstream of the flame resulting in the slight increase of d_{6,3}
- Number concentration of the second mode in the Pt-Type 2 flame is larger than in Pt-Type 1 throughout the flames
- □ The synthesized nanoparticles appear to grow at rates that are orders of magnitude slower than the collision rate of non-interacting Brownian nanoparticles

Current Work

Measurements on Ir nanoparticles

- The LS equivalent diameter of Ir-Type1 lies between LS equivalent diameter of Pt-Type1 and Pt-Type2
- The LS equivalent diameter of Ir-Type1 is consistent with the HAADF-STEM image analysis of the samples

alame name	Liquid fuel mixture (mL/min)	O ₂ (SLPM)	Pilot <i>CH</i> ₄ flow rate (SLPM)	Pilot O ₂ flow rate (SLPM)	Precursor in liquid fuel
Pt-Type 1	4	7.3	0.55	0.55	10 mM PtAcAc
Pt-Blank 1	4	7.3	0.55	0.55	-
Pt-Type 2	7	11	0.75	0.75	10mM PtAcAc
Pt-Blank 2	7	11	0.75	0.75	-
Ir-Type 1	8	12	0.75	0.75	9mM IrAcAc
Ir-Blank 1	8	12	0.75	0.75	_

Current Work

Raman measurements in Ir nanoparticles

- □ A Raman peak is detected in the Ir flame at ~1820 cm⁻¹ which is not present in the blank flame.
- Preliminary investigation suggests that the peak is, due to the presence of carbonyl groups on the surface of the synthesized nanoparticles

UCONN

Conclusions

- Identified a simple methodology for rapidly predicting the axial profile of the nanoparticle volume fraction downstream of two RSDT flames
- □ Pt nanoparticles withstand progressively higher vaporization temperatures as they are aging in the flame, possibly due to changes in their phase and/or degree of oxidation
- The PSDs are composed of two lognormal modes centered at approximately 1 nm and 6 nm, with the relative number of nanoparticles belonging to the larger mode being determined by the RSDT flame operating parameters for the investigated precursor solution
- The synthesized nanoparticles appear to grow at rates that are orders of magnitude slower than the collision rate of non-interacting Brownian nanoparticles
- Preliminary Raman results of Ir flame suggest the attachment of carbonyl groups on the surface of the synthesized nanoparticles

Acknowledgements

The authors would like to thank:

- Funding Agency
 - Department of Energy (DE-EE0008427)
- Center for Clean Energy Engineering of the University of Connecticut

Flame, Aerosol, and Nano Technologies Laboratory (FANTastic Lab)

flamenanoaerosol.wordpress.com

Questions

Contact Information: evangelos.stefanidis@uconn.edu

UCONN