

Air to Liquid Interface (ALI) cell exposure under transient driving of gasoline vehicles

P. Baltzopoulou¹, <u>E. Papaioannou¹</u>, D. Deloglou¹, G. Tsakonas², R. Stamatiou³, A. Lazou³, Z. Samaras²

¹Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001, Thessaloniki, Greece²Laboratory of Applied Thermodynamics (LAT), Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece ³Physiology Laboratory, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece

INTRODUCTION

The problem

Air pollution, including exhaust emissions, especially in urban areas, has been suggested as one possible cause of the increased risk of respiratory and cardiovascular diseases, including asthma, lung cancer, and stroke. In particular, the ultrafine particles (UFPs) present in emissions are particularly harmful due to their small size, which allows them to penetrate deep into the lungs and even pass into the bloodstream, brain and placenta [1, 2].

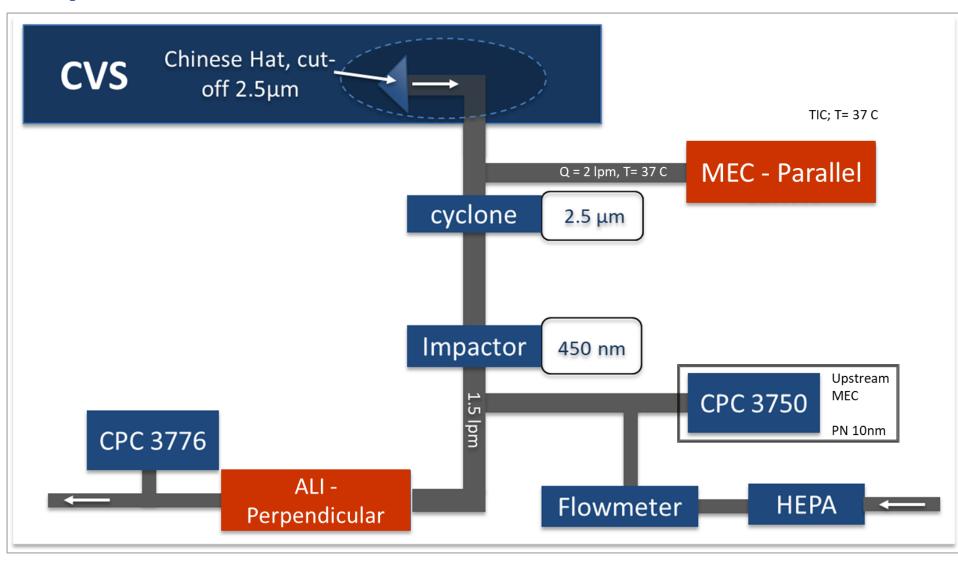
The objective

- To investigate the potential health effects associated with different vehicle emission standards and driving cycles.
- To evaluate the impact of two different designs of Air Liquid Interface (ALI) in-vitro cell exposure chambers through cell exposure experiments. The main difference between the exposure chambers is the direction of the exhaust flow (parallel and perpendicular) that also affects the emission doses.

Dosimetry

Doses are determined according to the **deposition efficiency of each system** and are equivalent to human inhalation during realistic daily exposure [6].

C_{TWA}*Qexposure Cell density *Deposited surface Cell density *Deposited surface Dose =

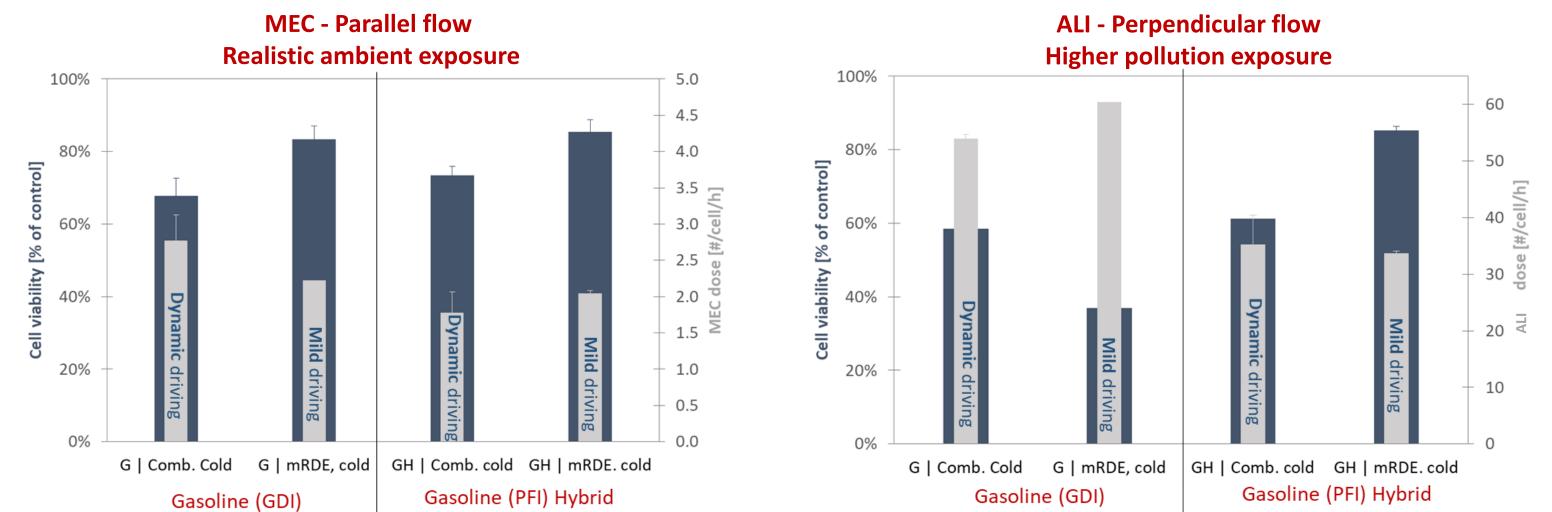

where: TWA: Time Weighted Average: $C_{TWA} = \frac{J_{t=1s}}{t}$

Cell density is calculated from the Alamar Blue assay at control experiments [cells/cm²]

(a) MEC - parallel dose = 1.6 – 3 #/cell/h	(b) ALI - perpendicular dose = 27 – 57 #/cell/h
	In the range of equivalent to human inhalation at
realistic <u>ambient exposure [</u> 6]	higher pollution levels [6]

MEC dose ~ 15x ALI dose

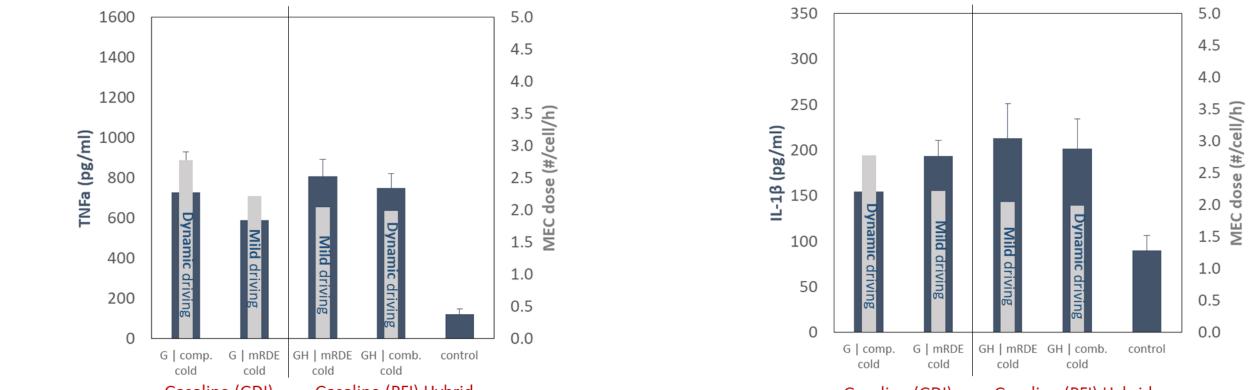
METHODOLOGY Experimental Setup

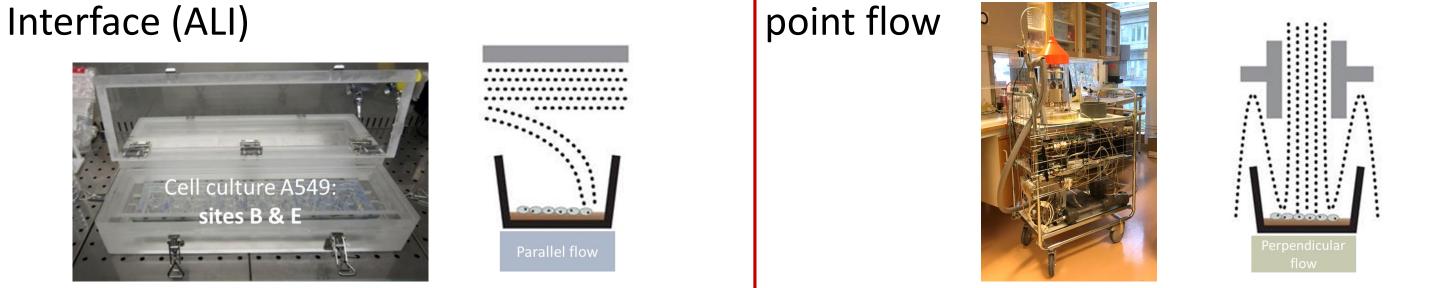

In-vitro Cell* Exposure Systems

(a) Multiculture in-vitro Cell exposure **Chamber (MEC) – Parallel flow** [4] : the flow is parallel and particulates are deposited due to diffusion at Air-to-Liquid

(b) ALI system – Perpendicular flow [5]:

the flow is perpendicular, and particulates are deposited due to diffusion with minor enhancement caused by the stagnation


Cell viability at different exposure doses



* At realistic ambient exposure (MEC - parallel) dynamic (combined) driving of both GDI and hybrid G-PFI caused higher cell mortality compared to the mild (mRDE) driving.

At higher pollution exposure (ALI - perpendicular) cell mortality is higher for the GDI vehicle compared to the hybrid G-PFI one. No clear image for the effect of driving dynamics.

TNFa & IL-16 assays | MEC – parallel flow \rightarrow Realistic ambient exposure

*A549 human epithelial cells

Emission standards and driving cycles

Vehicles:

- Gasoline Direct Injection (GDI) vehicle equipped with a Gasoline Particle Filter (GPF)
- Gasoline Port Fuel Injection (PFI) hybrid vehicle

Driving cycles / dynamics of driving:

- Mild one at urban streets ("mRDE" driving cycle, cold start)
- Dynamic one, mainly at highway ("Combined" driving cycle, cold start)

RESULTS

REFERENCES

Homogeneity assessment of MEC – parallel flow

MEC - Parallel has equivalent sites by design, for multiple ALI cell exposures. Between randomly chosen sites B and E, a low, acceptable overall error of 4% is observed based on the Alamar Blue cell viability assay, that confirms homogeneity

Experiment No.	Site B	Site E	Average	Std.Dev.	Error (B,E)
	cells/cm^2 (*10^3)				(%)
exp1	281	338	309	40	13%
exp2	262	308	285	32	11%
exp3	245	250	247	3	1%
exp4	354	352	353	1	0%
exp5	364	383	374	13	3%
exp6	463	465	464	1	0%
exp7	427	457	442	21	5%
exp8	403	400	402	2	1%

404

360

349

400

353

361

[6] Paur, H.-R. et al, (2013). J. Aerosol Sci. 42, 668–692

2%

3%

5%

10

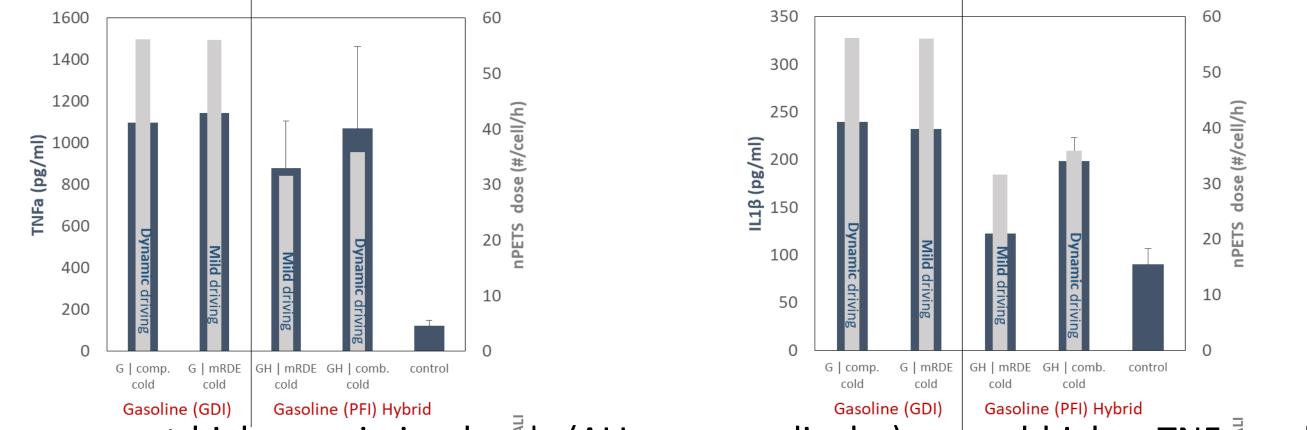
18

396

346

373

exp9


exp10

exp11

[2] Leikauf, G.D., et al. (2020) Exp. Mol. Med., 52, 329–337 [5] Latvala, S. et al., (2016) J. Appl. Toxicol., 36: 1294–1301.

- \diamond Cell exposure at realistic ambient exposure (MEC parallel) caused high TNFa and IL-1 β compared to the control.
- * At such low doses, no significant effect is observed between the vehicle type (GDI and hybrid G-PFI) and between the driving dynamics (combined and mRDE driving cycle).

TNFa & IL-16 assays | ALI – perpendicular flow \rightarrow Higher pollution exposure

- Sell exposure at higher emission levels (ALI perpendicular) caused higher TNF and IL-1β values compared to the cell exposure at realistic ambient levels (MEC - parallel).
- Soth TNFa and IL-1β values are higher for the GDI vehicle compared to the hybrid G-PFI.
- For hybrid gasoline PFI vehicle, dynamic (combined) driving causes higher exposure doses compared to the mild (mRDE) driving.

CONCLUSIONS & FUTURE WORK

• At both exposure doses (parallel & perpendicular flow system), dynamic (combined)

[1] US EPA (2021) Health Effects of Air Pollution

[3] EU Env. Agency (2020) Air quality in Europe

		A MARINA A M Marina
20 m	20 nm	TEM microscopy / FFT analysis: Lattice spacing is estimated at 0.46nm, a value identical to that of soot .

driving caused higher cell mortality compared to the mild (mRDE) driving, while the higher biological effect was observed at higher doses emitted by GDI vehicle during dynamic driving.

- At ambient dose (parallel flow system) increase of cytokines and flammability was observed but not significantly affected by the vehicle type and dynamics of driving.
- At higher dose (perpendicular flow system) GDI vehicle caused higher cytokines and Ο flammability compared to the hybrid G-PFI.
- Future investigation of other type of fuel and vehicles (e.g. CNG) is planned with incorporation of Quartz Crystal Microbalance (QCM) to the MEC - parallel system (for real time dose measurement).

ACKNOWLEDGMENTS

CERTH would like to thank nPETS project for including MEC device in project's experimental campaigns.

nPETS has received funding from the European Union's Horizon 2020 programme under G.A. No 954377.

Contact: Penelope BALTZOPOULOU Tel: +30 2310 498415 e-mail: pbaltzop@certh.gr Web: https://cperi.certh.gr

[4] Asimakopoulou A. et al. (2013) J. of Physics: Conf. Series, 429, 012023

European Union