Impact of Sulphur Exposure on ^oCatalytic Stripper Performance

Vinicius Berger, Hans-Joachim Schulz, Adam Boies, Umesh Sonkamble, Jacob Swanson

Catalytic Instruments GmbH & Co. KG

26th ETH Nanoparticles Conference

Zürich, 21.06.2023

Why Sulphur Exposure?

Sulphur is stored in the catalyst and reduces the catalytically active surface → performance loss Regeneration should be possible

How long does a **Catalytic Stripper** work in sulphurous conditions?

When should it be serviced?

Test Methods

State of the art:

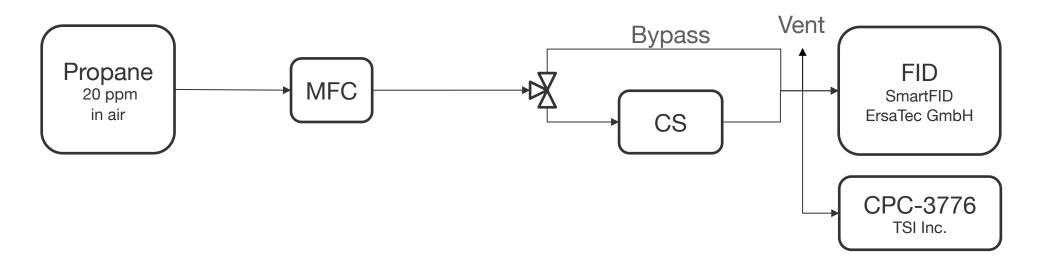
- - ✓ > 99.0% vaporisation of 30 nm tetracontane particles with an inlet concentration of ≥ 10,000 cm⁻³ ✓ (23 nm GTR)
 - ✓ > 99.9% vaporisation of tetracontane particles with a CMD > 50 nm and a mass above 1 mg/m³ (10 nm / Brakes GTR)
- Aerosol measurement equipment⁺ and know-how necessary to perform this check

+we use our SPG as Tetracontane Generator – at a touch of a button

Wanted:

- Quick,
 - easy and
 - reliable method

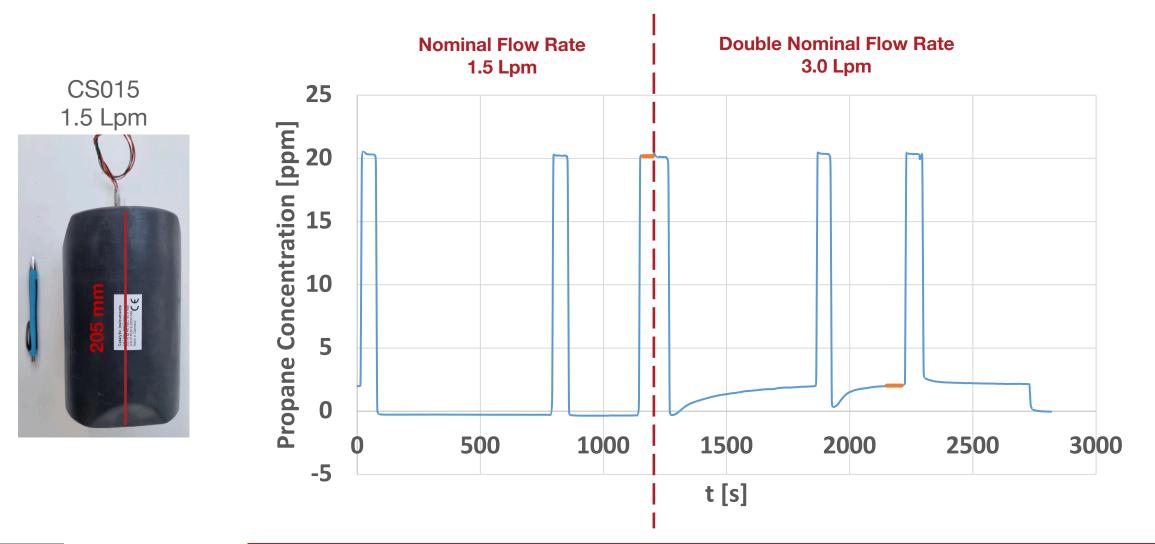
to check if °Catalytic Stripper is operational as designed and meets the above criteria

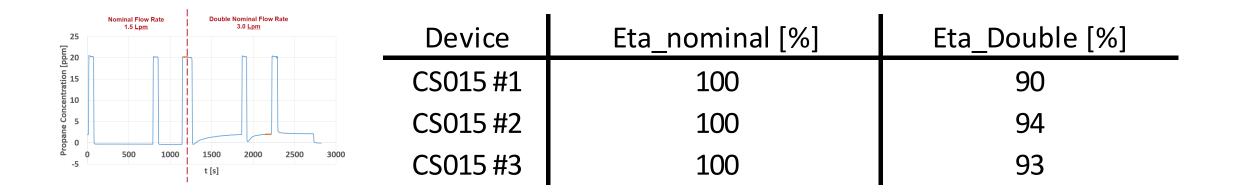


New Test Approach

Propane Oxidation Efficiency Measurement (POEM)

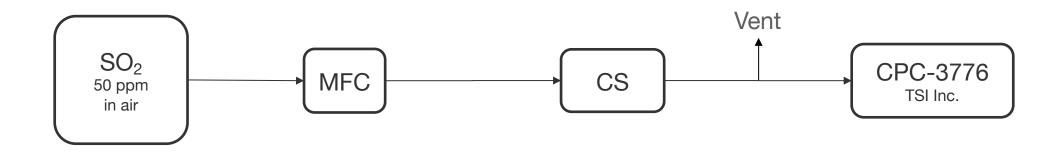
- Propane (C_3H_8)
 - Gaseous hydrocarbon
 - Low-cost
 - Easily available as calibration gas bottle
 - Bottle concentration is constant
 - Easy to detect with FID


Experimental Setup - POEM


Tasks:

- Find suitable propane concentration
- Characterise new
 Catalytic Stripper
- Expose °Catalytic Stripper to sulphur
- Evaluate sulphur-exposed °Catalytic Stripper

Comparison of 3 New CS015


Comparison of 3 New CS015

 \rightarrow Performance of three similar CS015 at double nominal flow is similar

No particle emission observed

Experimental Setup – Sulphur Exposure

Tasks:

- Expose the °Catalytic Stripper to sulphur from SO₂ gas (50 ppm SO₂ in air)
 - 3 x 1h SO₂ exposure, POEM and tetracontane testing in between
- Calculate exposed sulphur mass with known concentration and flow rate of SO₂
- Calculate emulated operating time with assumptions regarding fuel, engine operating point, dilution

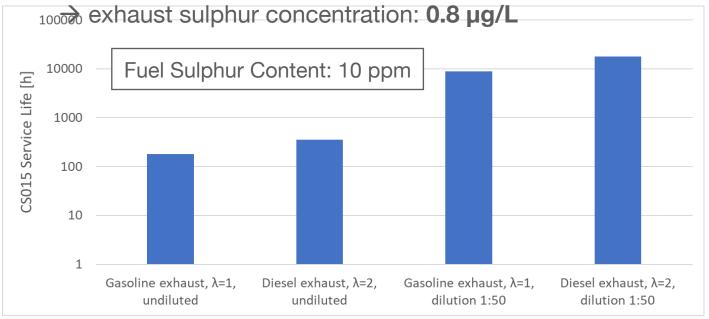
Performance after Sulphur Exposure

[%]	After 1x 1h of	SO2 , i. e. 1.24 g/L	After 2x 1h of	SO2 , i. e. 2.48 g/L	After 3x 1h of SO2 , i. e. 3.72 g/L		
Device	Eta_POEM	Eta_Tetracontane	Eta_POEM	Eta_Tetracontane	Eta_POEM	Eta_Tetracontane	
CS015 #1	100	99.999	100	99.998	100	99.965	
CS015 #3	100	99.999	100	99.990	100	99.566	

Particle emission observations:

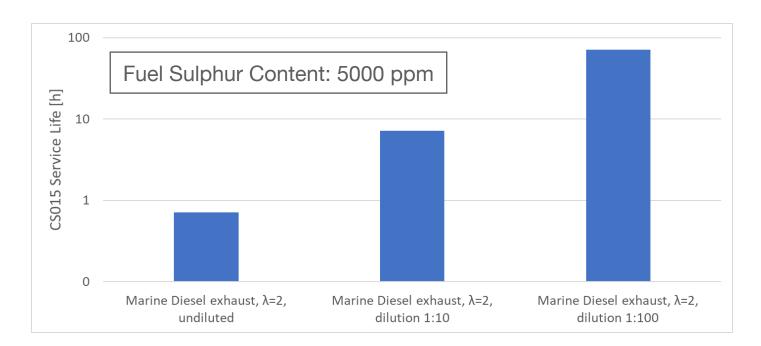
- CS015 #1:
 - No PN emission during SO₂ exposure and POEM, minor tetracontane PN
- CS015 #3:
 - Increasing PN emission (1E3/cm³) during last minutes of 3rd SO₂ exposure
 - Large PN emission (2E4/cm³) during 3rd POEM for CS015 #3
 - Very large PN emission (5E5/cc) after tetracontane test, sampling ambient air

Conclusions:


- POEM in this configuration not sensitive enough
- Both CS015 can be safely used up to 2.5 g/L sulphur loading (gram sulphur per liter catalyst)

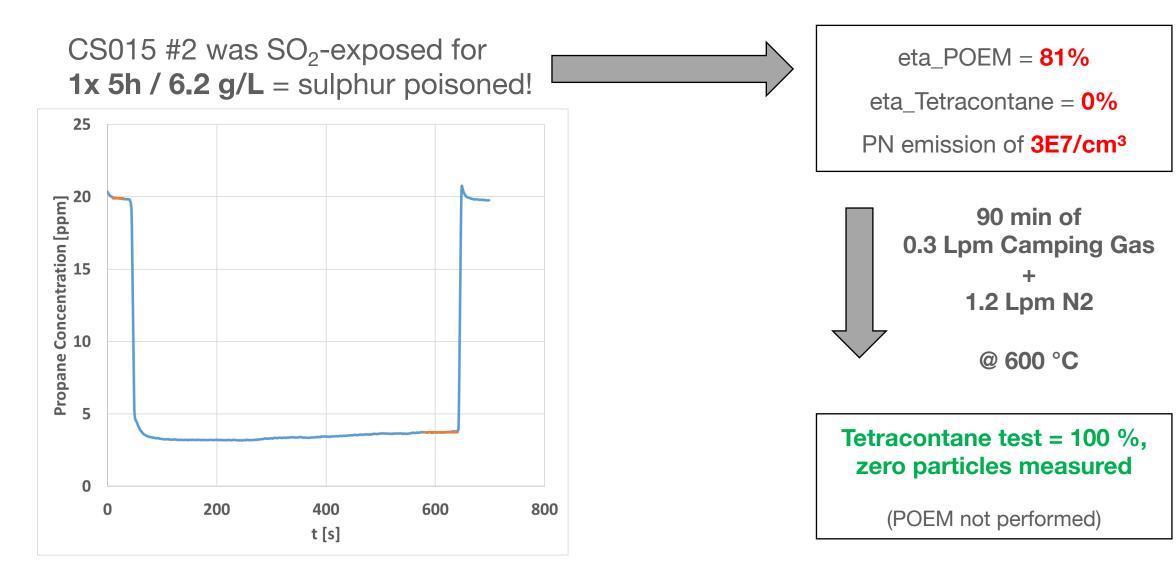
99.9%

Estimating CS015 Service Life


Assumptions for calculating exhaust sulphur content:

- Complete, stoichiometric ($\lambda = 1$) combustion of octane
- No sulphur contribution from engine oil
- 10 ppm fuel sulphur content

- Decent service life even without dilution
- Typical PMP-compliant systems use 1:50 to 1:100 dilution before CS, extending service life to years


Estimating CS015 Service Life

Marine fuel sulphur content 5000 ppm:

- Raw exhaust is very challenging
- High dilution factors are recommended
- Sulphur exposure should be roughly estimated and monitored
- PN emission should be checked from time to time

Successful Regeneration

Summary

Propane oxidation efficiency measurement is a quick and easy approach

- Sensitivity needs to be increased
- PN should be measured in parallel

SO₂-exposure enables service life estimation:

- A °Catalytic Stripper CS015 has a service life of several thousand hours in typical automotive applications
- High sulphur applications should roughly estimate sulphur exposure and use high dilutions

Confirmation that sulphur-impaired °Catalytic Stripper can be regenerated

Outlook

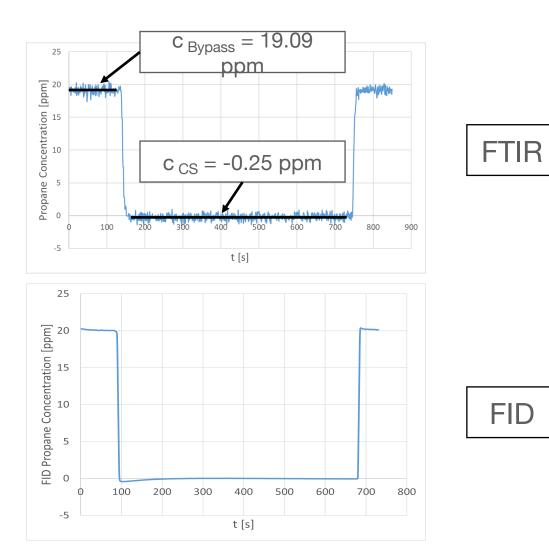
Increase POEM sensitivity

Test more ^oCatalytic Strippers for statistically robust results

More detailed investigation of how to best regenerate a °Catalytic Stripper

Investigate phenomenon "self-regeneration"

Investigate whether regeneration fully removes sulphur, or residual sulphur impairs CS performance in a way that replacement is necessary at some point


Contact:

vinicius.berger@catalytic-instruments.com

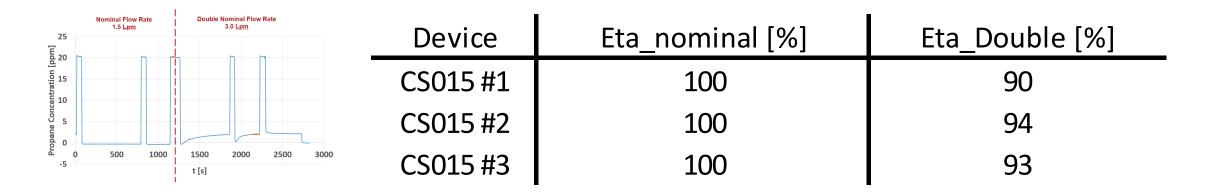
Appendix

A1

Results: FTIR vs. FID

FID has much better Signal-to-Noise ratio

= it is better suited for the task of measuring a single chemical component

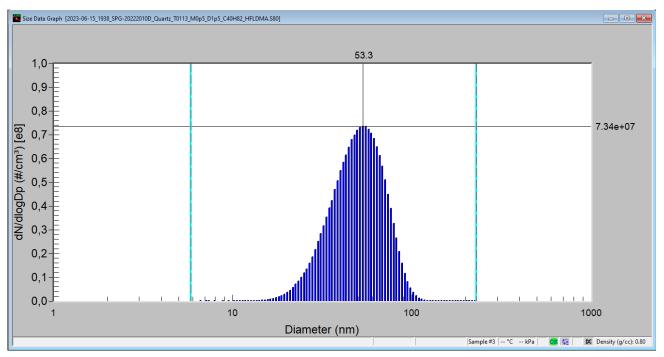

Oxidation Efficiency Calculation:

$$\eta = 1 - \frac{c_{CS}}{c_{Bypass}}$$

Error calculation:

Mean + SD \rightarrow Error Propagation $\rightarrow \pm \sigma$

Comparison of 3 Similar CS015

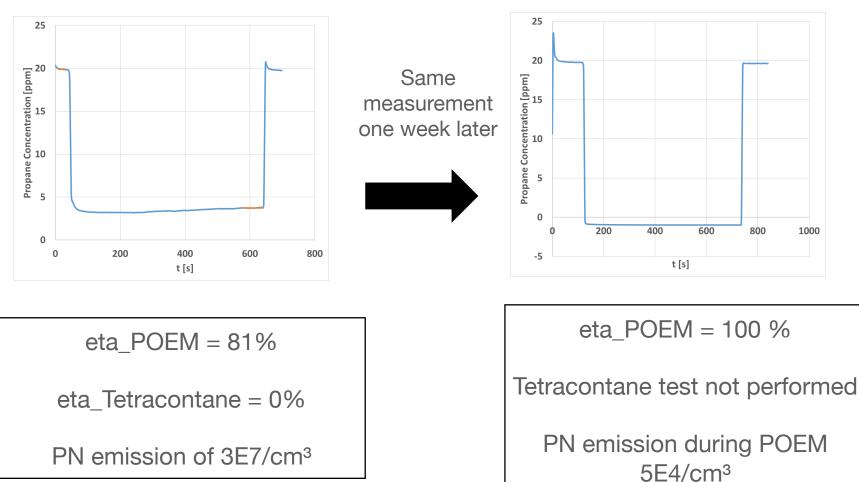

- Why all 100%?
 - FID zero calibration is done with thermodenuder = removes less HC than CS = CS below zero level
 - 20 ppm propane not challenging enough?
 - \rightarrow FID with catalyst for zero gas is ordered

 \rightarrow Performance of three similar CS015 at double nominal flow is similar

No particle emission observed

A3

Example Tetracontane PSD



	Number	Diameter	Surface	Volume	Mass	
	Particle Size	Particle Size	Particle Size	Particle Size	Particle Size	
Median (nm)	50.5	56.3	61.7	66.5	66.5	
Mean (nm)	51.9	57.2	62.3	67.0	67.0	
Geo. Mean (nm)	49.2	54.6	59.8	64.7	64.7	
Mode (nm)	53.3	61.5	66.1	71.0	71.0	
Geo. St. Dev.	1.40	1.37	1.34	1.31	1.31	
Total Conc.	2.74e+07(#/cm ³)	1.42e+03(mm/cm ^s)	2.56e+11(nm ² /cm ³)	2.65e+12(nm ^s /cm ^s)	2.12e+03(µg/m ^s)	

A4

Self-Regeneration?

CS015 #2 was SO₂-exposed for 1x 5h

