

Physical and Chemical Characterization of the Particles Emitted by A Hydrogen Fueled DI SI Engine:

the Role of Lube Oil

B. Apicella, F. Catapano, S. Di Iorio, A. Magno, C. Russo, P. Sementa, A. Tregrossi, B. M. Vaglieco

Institute of Science and Technology for Sustainable Energy and Mobility (STEMS) - CNR, Naples, Italy

26th ETH Conference on Combustion Generated Nanoparticles

Environmental Pollution

Deterioration of Air Quality

Consiglio Nazionale delle Ricerch

Environmentally Friendly

Comprehensive investigation on the contribution of the lubricating oil on particle emissions from a DI hydrogen fueled engine

DI SI Engine						
Cylinder volume [cm ³]	250					
Bore [mm]	72					
Stroke [mm]	60					
Compression ratio	9:1					
Max power [kW]	7.9 @ 5000 rpm					
Max torque [Nm]	14.7 @ 5000 rpm					

Oil Properties						
Viscosity	10W-40					
Density @ 20 °C	0.870 kg/l					
Viscosity @ 40 °C	101.7 mm²/s					
Viscosity @ 100 °C	14.5 mm²/s					
Viscosity index	151					
Pour point	-35.0 °C					
TBN	10.1 mg KOH/g					
Flash point	228 °C					

Operative Conditions

	Engine	Throttle	SOI	DOI	SOS	λ	imep	COV imep
	speed	opening	[cad	[cad]	[cad]	[-]	[bar]	[%]
	[rpm]	[%]	BTDC]					
2000 rpm -LL	2000	15	-270	170	7.0	1.6	4.0	1.0
2000 rpm -HL	2000	95	-260	225	11.6	1.5	5.5	1.2
3000 rpm -LL	3000	15	-270	260	13.7	1.5	4.3	1.5
3000 rpm -HL	3000	95	-352	240	10	1.6	5.7	1.6

Urban & Extra Urban driving conditions

Environmental Conditions

Experimental Layout

Chemical Analysis: SOF & SOOT

Experimental Results: Number

Consiglio Nazionale delle Ricerche

Consiglio Nazionale delle Ricerche Consiglio STEMS Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili

Experimental Results: Size

Experimental Results: Number & Size

Experimental Results: SOF Analysis

Proportion between the Lighter and Heavier Aromantic Compounds

Experimental Results: SOF Analysis

PAH concentration

Toxicity and Mutagenicity Contamination of soil bacterial communities

Experimental Results: SOOT Analysis

Soot is comparable in terms of nanostructures to a mature soot having low hydrogen content and a relatively high extension of the aromatic plane

Experimental Results: SOF/Soot vs PSDF

increases the formation of nucleated particles that rapidly grow and coagulate to form larger aggregates

Higher presence of PAH species in the SOF samples at 3000 rpm –LL

- Physical and chemical analysis of PM emitted from a DISI Hydrogen fueled engine was performed.
- > Not negligible particle emissions were found at the exhaust.
- > PN fluctuation can be ascribed at the presence of oil pool that burns periodically.
- Particle number and size varies with speed and load: increase with speed and decrease with load.
- PAH were found at all engine conditions: lighter species were more abundant at 3000-LL and heavier species were more abundant at 2000-LL.
- Soot was collected on the filter only at high engine speed.

-the incomplete combustion of the organic components in the lubricating oil; -the breakdown of the carbon.

The different behavior (N, Dp, SOF, Soot) with speed and load can be ascribed to the different environmental conditions encountered by the oil in the combustion chamber.

Consiglio Nazionale delle Ricerche

Physical and Chemical Characterization of the Particles Emitted by A Hydrogen Fueled DI SI Engine:

the Role of Lube Oil

B. Apicella, F. Catapano, S. Di Iorio, A. Magno, C. Russo, P. Sementa, A. Tregrossi, B. M. Vaglieco

Institute of Science and Technology for Sustainable Energy and Mobility (STEMS) - CNR, Naples, Italy

26th ETH Conference on Combustion Generated Nanoparticles

Conclusions 2/2

Incomplete combustion of the organic components in the lubricating oil and the breakdown of the carbon can be responsible for PM.

At 2000 rpm-LL aromatic species with more than 7 rings are present but their concentration and the experienced temperature are not enough to convert them in soot.

The different behavior with load at 2000 and 3000 rpm can be ascribed to the different environmental conditions encountered by the oil in the combustion chamber

Experimental Results: Number & Size

Experimental Results: Number & Size

Experimental Results: SOOT Analysis

Soot is comparable in terms of nanostructures to a mature soot having low hydrogen content and a relatively high extension of the aromatic plane

<u>Size of the Aromatic Layer Length</u> I(D)/I(G) 0.95 corresponding to an aromatic length of 1.23 nm