

Reduced particle emissions from paraffinic diesel blended with polyoxymethylene dimethyl ether

Järvinen A.¹, Aakko-Saksa P.¹, Karppanen M.¹, Koponen P.¹, Markkula L.², Hoivala J.², Rönkkö T.², Aurela M.³, Harni S.³, Timonen H.³

¹ Emission Control and Sustainable Fuels, VTT Technical Research Centre of Finland, Tietotie 4 C, 02150 Espoo, Finland
 ² Aerosol Physics Laboratory, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
 ³ Atmospheric Composition Research, Finnish Meteorological Institute, P.O.Box 503, 00101 Helsinki, Finland

Introduction

New synthetic electrofuels, mimicked here by a renewablebased paraffinic and an oxygenate component, are potential methods to reduce engine emissions. In previous studies, polyoxymethylene dimethyl ether (OME) as a blend component has been observed to reduce particle emissions of a single cylinder test engine [1, 2].

Methods

Three different diesel fuels were tested: fossil EN 590 diesel, HVO-type paraffinic diesel and HVO-type paraffinic diesel blended with 10.6 vol-% of OME.

Engine-out emissions were measured from a modern 4.4 L turbocharged common-rail non-road diesel engine, which was used in this study without any aftertreatment system. The engine was run according to the RMC-C1 cycle and

additional 5 static loads were also tested. The engine speed and torque was set to the same values for all the fuels.

Gaseous emissions were measured with an FTIR (Gasmet DX-4000) and an exhaust analyzer (Horiba PG-250). Particulate matter (PM) emission were measured with ISO 8178 type sampling system. Elemental and organic carbon (EC/OC) analysis were conducted from quartz filter samples. Particle number emissions (Non-volatile PN23) were measured with a dilution system (Dekati eDiluter followed by DEED) and a 23 nm CPC (Airmodus A23).

Results

Fuel type affected gaseous emissions. CO emissions were reduced with paraffinic diesel and even further with OMEblend. Paraffinic diesel produced the lowest THC emissions (measured with FTIR) . OME-blend resulted in similar THC with EN 590 and larger than with paraffinic. Formaldeldehyde emissions from OME-blend were high

compared to other fuels. NO_x emissions were relatively similar with all fuels.

OME-blend resulted in large decrease in non-volatile

Figure 1. Average engine-out (no aftertreatment) CO, FTIR THC, formaldehyde, non-volatile PN23, PM and EC emissions with different fuels for RMC-C1 cycle. Errorbars shown represent the standard deviation.

Conclusion

- OME blending significantly reduced engine-out emissions of black/elemental carbon and non-volatile particle number but not PM.
- OME blending increased emissions of hydrocarbons compared to paraffinic diesel and formaldehyde compared to paraffinic and EN 590 diesels.
- Further study is needed to evaluate emissions with OME when engine is equipped with exhaust

PN23. Paraffinic and OME-blend produced lower PM emissions than EN 590. EC emissions from paraffinic diesel were lower than from EN 590. OME-blend produced clearly the lowest EC emissions. The reduction in EC but not in PM with OME-blend may be related to relatively high THC emissions with the OME-blend.

[1] Ahmad Omari, Benedict Heuser, Stefan Pischinger, Christoph Rüdinger, Applied Energy, 2019, 239, 1242-1249.
[2] Matteo Parravicini, Christophe Barro, Konstantinos Boulouchos, Fuel, 2021, 292, 120177.

aftertreatment

Acknowledgements

This study was a part of the E-fuel-project funded by Business Finland (43287/31/2020). Authors thank Neste for providing the diesel fuels and AGCO Power for providing the engine for the study.

Contact: Anssi Järvinen, Senior Scientist Tel. +358 50 534 3422, anssi.jarvinen@vtt.fi

beyond the obvious

www.vttresearch.com