

A Study on Predicting CO₂ Emissions Based on Calculated ECU Data and **Deep Learning Model on Real-Driving Conditions for LDVs**

Youngjae Jeon¹⁾, Chanbin Lee¹⁾, Mun Soo Chon¹⁾, Junepyo Cha^{1)*}

Department of Automotive Engineering, Korea National University of Transportation, Republic of Korea¹⁾

26th ETH-Conference on Combustion Generated Nanoparticles, June 20th – 22nd, 2023 at ETH Zurich, Switzerland

Introduction	Test Vehicle	Test Equipment (PEMS)		
Absolute Change of CO ₂ Emissions 1990 to 2020 for EU-KP Share of CO ₂ Emissions in 2020 for EU-KP		Stintech das		

- ♦ In EU-KP, CO₂ emissions decreased in the majority of sectors between 1990 and 2020. However, CO₂ emissions increased in road transportation.
- high proportion in Korea in 2020.
- vehicles has been strengthened emissions regulation. (e.g. EU - Fit for 55, Korea -FRAMEWORK ACT ON CARBON NEUTRALITY AND **GREEN GROWTH FOR COPING WITH CLIMATE CRISIS**)
- transportation, various emission calculation systems suitable for each country have been USA - MOVES, Korea - CAPSS)
- emissions during real-driving through deep learning model.
- emissions based on calculated ECU data and deep

Vehicle	Fuel Type	Model Year	Vehicle Type	Disp.	Tolerance Weight	Max. Torque	Emission Regulation
Veh. 1	Diesel	2018	Sedan	1,685cc	1,520kg	34.7kg•m	Euro-6
Veh. 2	Gasoline	2017	Sedan	1,591cc	1,480kg	27kg∙m	LEVIII-ULEV70
Veh. 3	Hybrid (Gasoline + Electricity)	2017	Sedan	1,999cc	1,585kg	19.3kg•m	LEVIII-ULEV125

Correlation Test

Vehicle	Test Mode	CVS (g/km)	PEMS (g/km)	Diff. (%)	Diff. (abs.)
Veh. 1	WLTC	138.66	152.52	10	13.86
Veh. 2	WLTC	128.841	131.489	2	2.65
Veh. 3	WLTC	110.561	113.841	3	3.28

*****Corresponding author : Junepyo Cha, Ph.D E-mail : <u>chaj@ut.ac.kr</u> **Associate Professor**,

Department of Automotive Engineering,

Conclusions

• Deep learning model results are similar to Combustion reaction calculation results and characteristics of diesel vehicles (CI engine, EGR) are shown. • The deep learning models conducted with each vehicle data have high accuracy than that conducted with diesel, gasoline and hybrid vehicle data at once.

- Although the deep learning model has lower accuracy than combustion reaction calculation for time-series data, it has a similar level of high accuracy for one RDE.
- \blacklozenge It is possible to predict CO₂ emissions through dynamic factors of vehicles, but there exist limit.

• For accurate prediction, it requires to add factors related to engine and combustion. Also, it requires to add static factors like displacement, Tolerance weight, year, presence of after-treatments.

X Acknowledgement

This work was supported by the Korea Agency for infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, infrastructure and Transport(Grant RS-2023-00243220).

@Korea National University of Transportation(KNUT)