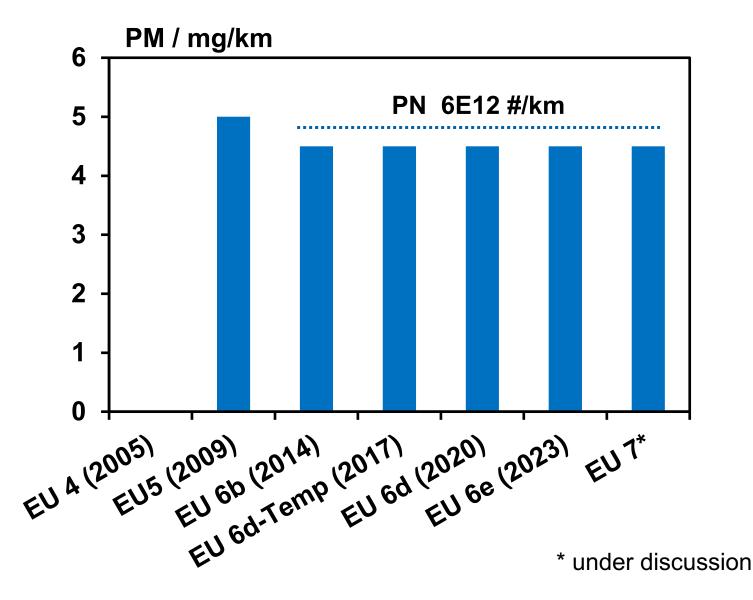


Catalytic soot oxidation in gasoline engine exhaust

C. Singer, C. Hahn, D.Q. Phan, S. Kureti *Technical University Freiberg, Chair of Reaction Engineering, Germany* T. Russwurm, M. Wensing *Friedrich-Alexander University Erlangen-Nuremberg, Professorship of Fluid Systems Engineering, Germany*

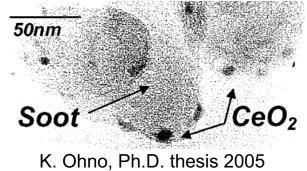

M. Koegl, L. Zigan

University of the German Armed Forces Munich, Institute of Thermodynamics, Professorship of Energy Conversion, Germany

Particulate emission limits of the EU for GDI passenger cars

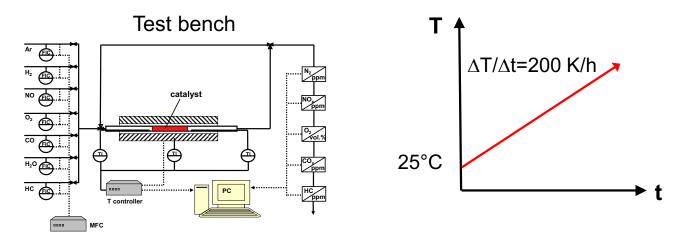
Future development of GDI technology

- Global GDI market is expected to increase from 10.6 bn US\$ (2023) to ^{https://www.futuremarketinsights.com/reports/} gasoline-direct-injection-gdi-market
 - \rightarrow Soot emissions of GDI cars may come increasingly under pressure
 - → Gasoline particulate filters (GPF) might be introduced widely
- Sustainable gasoline such as methanol, ethanol and synthetic MtG fuel may support the market growth of GDI technologies


MtG demonstration plant of TU Freiberg (STF technology of CAC)

Strategies of particulate filter regeneration

- Passive regeneration (T=200...450°C)
 2 NO + O₂ → 2 NO₂
 2 NO₂ + "C" → CO₂ + 2 NO
- Fuel Borne Catalyst: metal-organic compounds "C" + $O_2 \rightarrow CO_2$ T > 300°C $\overline{50}$
- Active regeneration (fuel post-injection)
 "C" + O₂ → CO₂ T > 600°C



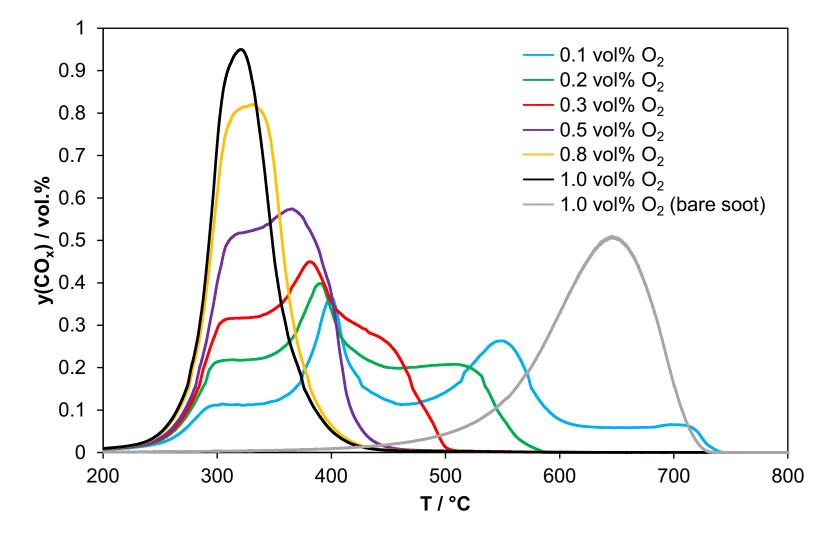
• Catalytic GPF (CGPF): CeO_2 and Fe_2O_3 based catalysts "C" + $O_2 \rightarrow CO_2$ T > 500°C Evaluation of MnO_x catalysts

Mn₂O₃ catalyst and test conditions

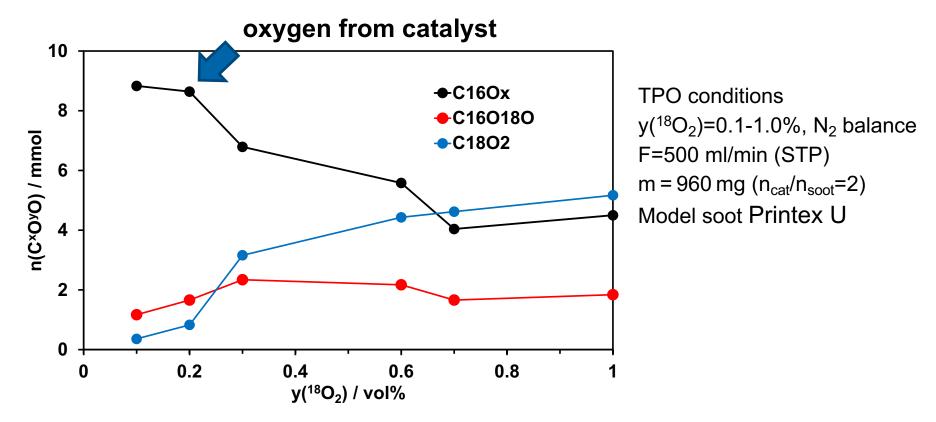
- Mn₂O₃ catalyst has been developed for soot oxidation in diesel exhaust
 → transfer to gasoline exhaust conditions
 Chem. Eng. J. 259 (2015) 492 Appl. Catal. B 272 (2020) 118961
- Preparation by flame spray pyrolysis followed by treatment at 550°C in air
- Catalytic tests made in laboratory using TPO with tight catalyst/soot mixtures

- TPO conditions
 - y(O₂)=0.1-1.0%, y(H₂O)=2%, N₂ balance
 - F=500 ml/min (STP)
 - $m = 960 \text{ mg} (n_{cat}/n_{soot}=2)$
 - Model soot Printex U

Reactor with Mn₂O₃/soot blend

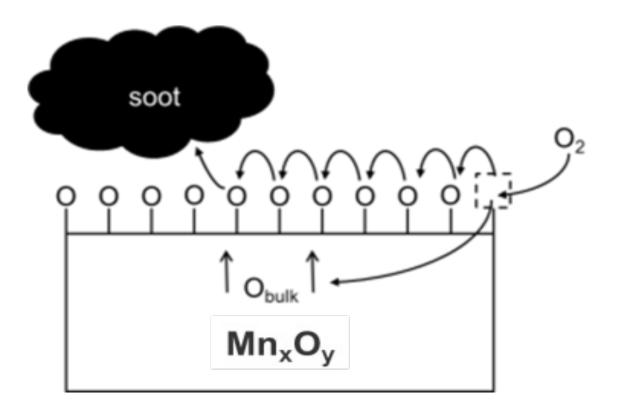


Effect of O₂ on soot oxidation activity of Mn₂O₃

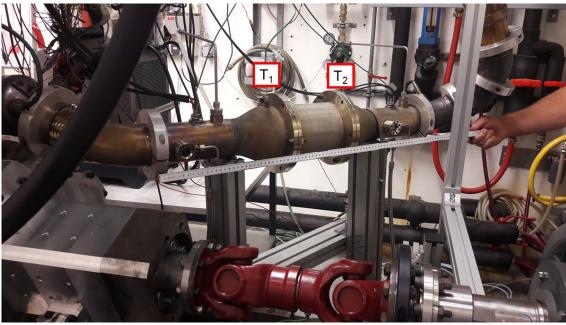


→ Increasing O₂ fraction enhances soot oxidation and suppresses temporal reduction of the catalyst

Isotopic TPO studies with tight contact Mn₂O₃/soot mixtures using ¹⁸O₂ fractions from 0.1 -1.0 vol.% followed by HTPR



→ Surface and particular bulk oxygen is increasingly transferred from the catalyst to the soot with decreasing O₂ content in the gas phase

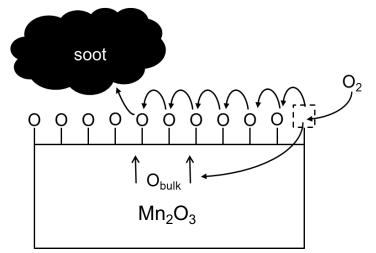

Transfer of oxygen from catalyst to soot



Evaluation of Mn₂O₃ catalyst in gasoline exhaust

1.4 I GDI engine with 4 cylinders and max. 45 kW

Coated GPF Catalyst load: 20 g/l D: 118.4 mm, L: 120 mm, 240 cpsi, 9.5 mil



- Soot deposition at λ=0.77 (p_{mi}=10 bar, F=93 kg/h) for 45 min using a bare and catalytically coated GPF → soot load: approx. 1.1 g/l
- Regeneration by increasing temperature to 500°C using engine management (λ=1.1, p_{mi}=9 bar, F=87 kg/h)
- → Rate of soot oxidation: 3.5 g/h with catalyst vs. 1.0 g/h without catalyst

- Mn₂O₃ prepared from flame spray pyrolysis is effective for soot oxidation in gasoline exhaust
- Mn₂O₃ catalyst requires
 intimate contact to soot
- Mn₂O₃ strongly supplies bulk oxygen to soot

Beneficial effect of catalyst is confirmed on the real world level

Financial support from German Agency of Renewable Resources (project BiOtto) is thankfully acknowledged

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz

FACHAGENTUR NACHWACHSENDE ROHSTOFFE e.V.