

INNOVHUB STAZIONI SPERIMENTALI PER L'INDUSTRIA Particulate matter and CO₂eq. emissions from three Euro 6d bi-fuel LPG passenger cars, fed by an innovative LPG/DME blend

> <u>Simone Lixi</u>, Simone Casadei, Davide Faedo, Martina Martini, Tommaso Rossi

> > R&D Laboratory Technician

Zurich, ETH Nanoparticles Conference 20-22/06/2023

innovazione e ricerca

Italian Scenario^[1]

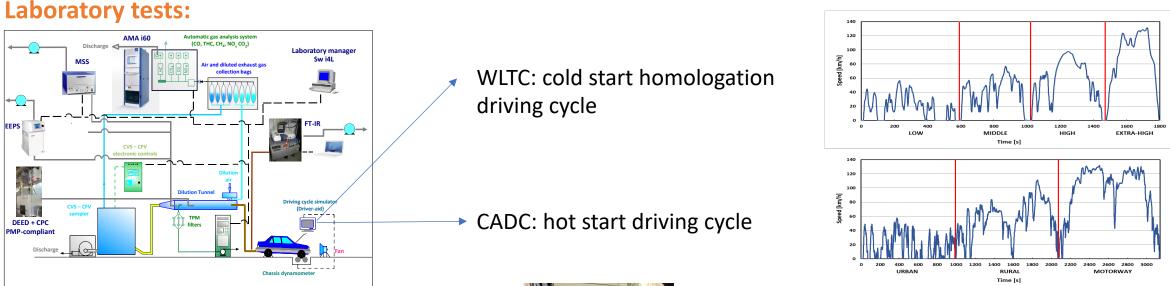
Goals of the work

- # of LPG cars still increasing (+32.7% Jan-May 2023 VS Jan-May 2022, largest increase in the ICE vehicles registrations), nowadays 2.9 million circulating LPG cars over 40.2 million total (7.2%)^[2]
- # of BEV and PHEV not growing as fast as expected

Need to investigate how to decarbonize the LPG sector and how to make it more sustainable

Bio-LPG: byproduct from HVO process^[3]

Potentially renewable fuels:


➤rDME: included in «Renewable Energy Directive II (RED)»^[4] by EU, bio-DME and eDME^[5]

- Measure regulated and unregulated pollutants emissions from ICE vehicles, fed by an innovative and potentially renewable fuel blend, fully compliant with the EN589: LPG/DME 80/20 (% m/m)
- Calculate and compare the emission factors: Gasoline VS LPG/DME

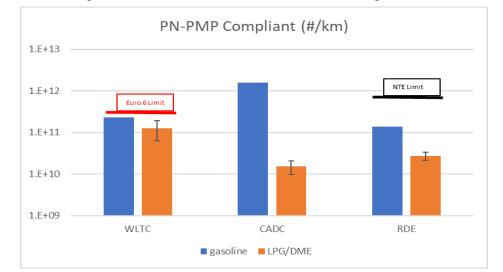
[1] UNRAE	[3]: E. Johnson <i>, Energies</i> 2019 , 12, 250	
[2]: ACI, 2022	[4]: Directive (EU) 2018/2001, pag 63	2
	[5]: M. A. Charalambous, V. Tulus, M. W. Ryberg, J. Pérez-Ramirez, G. Guillén-Gosàlbez, Suistanable Energy Fuels, 2023, 7, 1930-1941	~

Laboratory and on-road tests on three EURO 6d bi-fuel vehicles (two small and one medium segment)

On-road tests: real driving emissions (RDE)

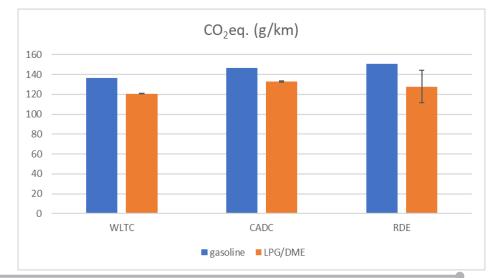
	Vehicle 1	Vehicle 2	Vehicle 3
Homologation Emission	Euro 6d	Euro 6d	Euro 6d
Standard			
Mileage at test start	8715	982	4952
(km)			
Enigne displacement	1197	999	1598
(cm³)			
COPERT segment	small	small	Medium
Injection type	Positive Ignition - PFI	Positive Ignition - PFI	Turbo Positive Ignition -
			TGDI
LPG powertrain	Retrofit	OEM	Retrofit
Emission treatment	TWC	TWC	TWC + GPF
technology			

INNOVHUB


PER L'INDUSTRIA

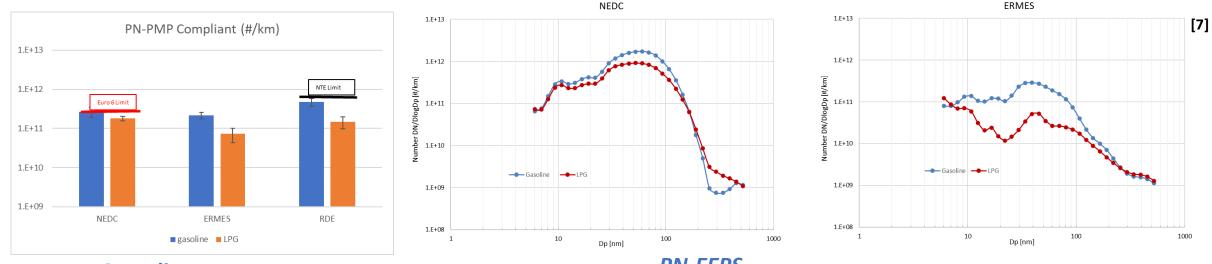
Emission Factors of PN and CO₂eq: Gasoline VS LPG/DME

		WLTC (homologation)			CADC (hot start)			RDE (on-road)			
		Gasoline	LPG/DME			Gasoline	LPG/DME		Gasoline	LPG/DME	
		1	Average	EURO 6 LIMIT	Δ, %	1	Average	Δ, %	1	Average	Δ, %
PM	mg/km	0.002	0.007	5.00		0.014	0.026		-	-	-
PN_PMP Compliant	#/km	2.28E+11	1.27E+11	6.00E+11	-44.2	1.56E+12	1.51E+10	-99.0	1.38E+11	2.74E+10	-80.1
CO ₂ eq.	g/km	136.67	120.82	-	-11.6	146.75	132.98	-9.4	150.60	127.90	-15.1


PN-PMP Compliant (regulated)

Decrease in solid particles emissions (23 nm - 2.5 μ m) when fed by LPG/DME both in laboratory and on road

$CO_2 eq. (CO_2, CH_4, N_2O)$


Decrease in CO₂eq. emissions when fed by LPG/DME both in laboratory and on road

Emission Factors: Gasoline VS LPG^[6]

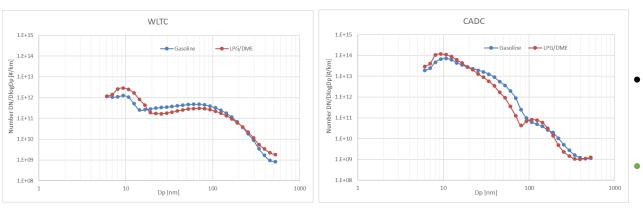
- Laboratory and on-road tests to measure the exhaust emissions of five Euro 6b/c bi-fuel vehicles
- NEDC (cold-start homologation cycle), ERMES (hot-start cycle) in lab. and RDE; emission factors for LPG calculated and made available at Italian and International level for updating EFs databases of emission models

PN-PMP Compliant

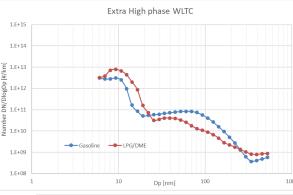
Decrease in PN emissions when fed by LPG both in laboratory and on road

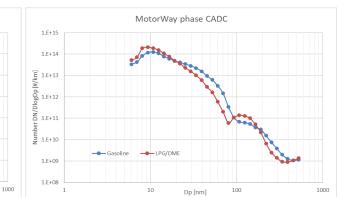
PN-EEPS

- Similar particle size distributions in the NEDC for both Gasoline and LPG
- Decrease in PN emissions in the hot-start cycle (ERMES) when fed by LPG

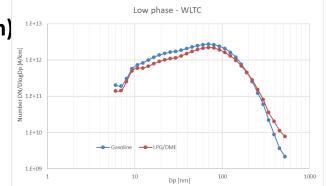

[6] T. Bellin, S. Casadei, T. Rossi, A. Bernetti, R. De Laurentis, G. Lonati, *Atmospheric Environment: X*, 15, **2022**, 100186 [7] G. Lonati, T. Bellin, T. Rossi, S. Casadei, EFCA Ultrafine particles symposium, **2022**

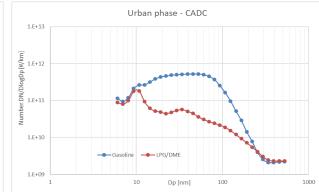
PN-EEPS (unregulated)


INNOVHUB


PER L'INDUSTRIA

Similar solid and volatile particles emissions (5.6 nm – 560 nm) in the overall cycles for both Gasoline and LPG/DME


High speeds -----> production of ultrafine particles (< 10 nm) ٠ in both cycles and for both Gasoline and LPG/DME



Low speeds ----> production of slightly bigger particles (> 30 nm) in the WLTC cycle for both Gasoline and LPG/DME

Decrease in PN emissions during the Urban phase of the hot-start cycle (CADC) when fed by LPG/DME

20/06/2023

NNOVHUB

LPG/DME 80/20 (m/m) blend was tested for Euro 6d passenger cars

- the pollutants emissions of both regulated and unregulated species were measured;
- their emissions factors were calculated and compared with those of gasoline fuelling.
- **Fully compliant with EN589** ٠
- Fully compliant with EURO 6 Exhaust Emission Standards, with interesting perspectives towards the EURO 7 ones ٠

		LPG/DME	EURO 7 LIMIT (LABORATORY)
NH₃	mg/km	8.5	20
CO	mg/km	223.1	500
THC	mg/km	25.1	100
NMHC	mg/km	21.0	68
NOx	mg/km	13.7	60

Lower PN emissions •

Lower GHG emissions

than gasoline

Next step: LCA analysis currently under development (LPG/DME VS BEV)

LPG/DME blend as innovative and potentially renewable fuel towards decarbonization and sustainability

THANK YOU FOR YOUR ATTENTION

Simone Lixi

Innovation is our tradition

simone.lixi@mi.camcom.com

\$ +39 02 8515.5180

www.innovhub-ssi.it

Acknowledgments: The measurement campaign described in this work was supported by Liquigas – Assogasliquidi Federchimica