Formation and Morphological Appearance of Tyre Wear Particle Emissions

M. Löber¹, L. Bondorf¹, T. Grein¹, T. Schripp¹, S. Wieser², S. Reiland² and F. Philipps² ¹ Institute of Combustion Technology, German Aerospace Center (DLR), Stuttgart, Germany ² Institute of Vehicle Concepts, German Aerospace Center (DLR), Stuttgart, Germany

1. Introduction

- Increase in PM10 & PM2.5 tyre wear emissions
- Tyre wear emissions are a major contributor to urban air pollution

PM2.5	PM10
30	40
25	35

2. Experiment

- Analysing tyre wear emissions during chassis dynamometer tests
- Tests on a passenger car (BMW i3) with enclosed tyre and brake

Measurement Setup on the BMW i3 Test Vehicle

Measurement Equipment

Particle Diameter [un

	And a state of the	
	and the second s	

Course of exhaust and non-exhaust emissions from road traffic in the UK.^[1] © Crown 2023 copyright Defra via uk-air.defra.gov.uk, licenced under the Open Government Licence (OGL).

Objective: Gain insight into the formation of tyre wear particles in order to identify approaches for its reduction

3. Results

Particle Measurements

- Highest particle emissions during acceleration
- Higher velocities result in higher emissions
- Particle modes at 10 and 200 nm (DMS 500), 400 nm (OPS)

SEM/EDS Analyses

- Different particle sizes collected on 14 ELPI stages
- Morphological features revealed on secondary electron images
- Larger particles (ELPI stage 9):
- Several µm in size \rightarrow
- Platelets or rod-like shapes \rightarrow
- Mechanical formation of particles \rightarrow
- Smaller particles (ELPI stage 6):
- Several hundred nm in size \rightarrow
- More rounded shapes \rightarrow
- Formation from gas phase \rightarrow

- EDS-spectra on coated (Au) polycarbonate substrates
- C, O, Si, S can be assigned to tyre tread (see table)
- Other elements from pavement/previous vehicle tests
- No major difference in composition

Pure tyre	Mass %
С	72.5
Ο	22.1
Si	4.6
Zn	0.5
S	0.3

4. Summary & Conclusions

- Measurement of tyre wear emissions on a chassis dynamometer
- Testing different driving scenarios with a passenger car showed that the particle number concentration depends on speed and acceleration
- Size-selective particle collection with ELPI was used to study morphology and chemical composition on SEM
- Larger particles are platelets/rods, indicating mechanical formation
- Smaller particles have rounded spherical shapes, indicating particle condensation from the gas phase
- Adjustment of chemical composition could reduce UFP emissions \rightarrow
- Besides C and O, there are many other elements from different sources

Acknowledgments

This work was conducted as part of the ZEDU-1 (Zero Emission Drive Unit-1) project and is supported by the Baden-Württemberg Ministry of Economy, Labour and Tourism. References

[1] Lewis, A., Moller, S.J., Carslaw, D., 2019. Non-exhaust Emissions From Road Traffic. Research Report, Defra, United Kingdom.

