Heterogeneous ice nucleation of soot particles: measurements, predictions and implications

Claudia Marcolli¹, Fabian Mahrt², Bernd Kärcher³

¹ETH Zürich, ²Paul Scherrer Institute, ³DLR Oberpfaffenhofen

Overview

RH/T conditions for the different ice nucleation modes

Homogeneous ice nucleation: Occurring on ubiquitous solution droplets

Heterogeneous ice nucleation:

Occurring on ice-nucleating particles (INPs) with nucleation sites

PCF:

Occurring on porous particles through homogeneous ice nucleation of pore water

Pore condensation and freezing (PCF)

- Capillary condensation of water into pores (Kelvin equation)
- Nucleation of ice within the pores (Classical nucleation theory)
- Growth of ice out of the pores (Kelvin equation)

Time in arbitrary units

Marcolli, ACP, 2020

Marcolli, ACP, 2020 5

What is the porosity of aerosol particles?

Soot

Porosity arising between primary particles

Mineral dust

Porosity arising:

- in aggregates of crystallites
- At edges of clay minerals

Activated fraction of processed miniCAST black

110

110

	Preprocessing	Evaporation		
Unprocessed	-	-		
contrail	104 % <i>RH</i> _w 228 K	38 % <i>RH</i> _w 233 K		
cirrus	96 % <i>RH</i> _w 228 K	38 % <i>RH</i> _w 233 K		
MPC	108 % <i>RH</i> _w 243 K	30 % <i>RH</i> _w 253 K		
Precool MPC				
Precool cirrus	65 % <i>RH</i> _w 228 K	38 % <i>RH</i> _w 233 K		

Activated fraction of processed miniCAST black

Pores within soot aggregates

Cubic packing

Spherical primary particles with typical diameters $D_{pp} = 10-30$ nm

Overlap
$$C_{ov} = \frac{D_{pp} - D_{ij}}{D_{pp}} = 0.01 - 0.2$$

 D_{ij}

В

D

Soot PCF on three-membered ring pore primary particle diameter: 20 nm, C_{ov} = 0.05

Marcolli et al., ACP, 2021 10

Soot PCF on four-membered ring pore primary particle diameter: 20 nm, C_{ov} = 0.1

Activated fraction (AF) parameterization of miniCAST

$$AF = 1 - (1 - P_{\rm N}(RH))^{\left(\left(N_{\rm p} - 2\right)^{1.86}\right)}$$
$$P_{\rm N}(RH_{\rm w}) = 10^{\left(\frac{1}{0.3374 - 0.006091RH_{\rm w}}\right)}$$

Primary particle diameter: $D_{pp} = 31 \text{ nm}$ Fractal dimension: 1.86

 \rightarrow Number of particles (N_p) in aggregate with diameter D_m

D _m	N _p		
400 nm	94		
300 nm	55		
200 nm	26		
100 nm	7		
80 nm	5		
60 nm	3		

PCF parameterization for aircraft soot

Ice nucleation activity of soot at cirrus conditions assuming:

- bare soot aggregates (no caoting)
- a distribution of primary particle sizes from 5–40 nm with mean D_{pp} = 20 nm
- Primary soot particle overlap from 0.01–0.2
- soot-water contact angle of 60°

Ice crystal formation at constant updraft

Ensemble simulations with high-resolution cirrus column model

- Typical upper tropospheric temperature (220 K) and pressure (250 hPa).
- Variable updraft speeds by random sampling from exponential distributions with standard deviations of 5 (weak), 15 (average), and 25 (strong) cm/s.

- Ice nucleation:

- Homogeneously on constant background aerosol: 500 000 L⁻¹ liquid 500 nmparticles (wet diameter)
- On **variable** soot particles sampled from normal distributions in concentration (with $n_s = 500 L^{-1}$ and $\sigma = 150 L^{-1}$) and size (with $D_m = 29.3 nm$ and $\sigma = 1.72 L^{-1}$)
- On a **variable** background mineral dust particle concentration sampled from a normal distribution in concentration (with $n_s = 28 L^{-1}$ and $\sigma = 12 L^{-1}$) and constant size distribution.
- **Ice growth:** constant deposition coefficients of α = 0.3 (dust) and 0.7 (soot).

Competition between homogeneous ice nucleation and ice nucleation on soot

Filled yellow circles: ice formed only on soot particles (no homogeneous nucleation)
Yellow circles with black outlines: ice formed also homogeneously
Yellow line: ice crystal number concentration if all soot particles had activated to ice

Competition between homogeneous ice nucleation and ice nucleation on mineral dust weak (5 cm s⁻¹) average (15 cm s⁻¹) strong (25 cm s⁻¹)

Filled green circles: ice formed only on background mineral dust (no homogeneous nucleation) Green circles with black outlines: ice formed also homogeneously

Green line: ice crystal number concentration (ICNC) if all dust particles had activated to ice

Competition between homogeneous ice nucleation and ice nucleation on soot and mineral

Filled red circles: ice formed only on soot or dust particles (no homogeneous nucleation) **Red circles with black outlines:** ice formed also homogeneously

Summary of all ensemble simulations

Case	Category	Updraft: 5 cm/s		Updraft: 15 cm/s		Updraft: 25 cm/s	
		Frequency	Median ICNC	Frequency	Median ICNC	Frequency	Median ICNC
Hom		100 %	14 L ⁻¹	100 %	74 L ⁻¹	100 %	164 L ⁻¹
Soot	only het	49 %	0.73 L ⁻¹	22 %	0.81 L ⁻¹	14 %	0.9 L ⁻¹
	Hom & het	51 %	22 L ⁻¹	78 %	92 L ⁻¹	86 %	215 L ⁻¹
Dust	only het	97 %	6 L ⁻¹	79 %	15 L ⁻¹	62 %	18 L ⁻¹
	Hom & het	3 %	21 L ⁻¹	21 %	151 L ⁻¹	38 %	272 L ⁻¹
All	only het	98 %	6 L ⁻¹	81 %	15 L ⁻¹	63 %	19 L ⁻¹
	Hom & het	2 %	22 L ⁻¹	19 %	164 L ⁻¹	37 %	275 L ⁻¹

 \rightarrow soot does hardly influence ice crystal number concentration (ICNC) considering the omnipresence of a background dust concentration

Conclusions

- Soot particles nucleate ice through a pore condensation and freezing process (PCF)
- Because of their tiny size, aircraft soot particles are poor INPs
- Upper tropospheric background concentrations of dust particles outcompete soot in cirrus cloud formation
- Aircraft soot does not seem to be relevant in cirrus cloud formation