

Improving counting efficiency and linearity beyond the on-road emission measurement regulations for Portable Emissions Measurement Systems (PEMS)

<u>Andreas Nowak</u>, Jorge Saturno, Mohsen Kazemimanesh, Alexandre Bescond, Rasmus Pettinen and Tobias Hammer

26th ETH Nanoparticles Conference

Physikalisch-Technische Bundesanstalt

Braunschweig und Berlin

Overview: MetroPEMS Project

6 NMIs, 1 DI, 2 academic partners, 1 industry partner 2.1 M€ budget, 3-year project started September 2020

SCIENTIFIC GOLS

WP1: Extending amount fraction capabilities of high accuracy primary reference materials of NO₂

<u>WP2: Metrological validation and performance</u> <u>tests of PN-PEMS devices</u>

WP3: Application-oriented PEMS EFM calibration procedures and uncertainty budgets

WP4: Real-world assessment of PEMS performance

WP5: Creating impact

WP6: Management and coordination

PN-Legislation and Traceability

- The specifications and requirements for particle number (PN) portable emissions measurement systems (PEMS) are described in European Commission Regulation (EU) 2017/1151 and its amendment (EU) 2017/1154.
- Traceability scheme for PN RDE counter (ISO NMI approach)

PN - PEMS device: General Setup

Exhaust from tailpipe

DEPEMS

Harmonization strategy at NMI

RECOMMENDATION for LAB-Setup:

- CAST + Predilution + VPR-Setup: Thermostable soot
- Lambda approach = 1 for all Operation Points (OP) at CAST
- A DMA Tandem / Approach by 2U + 3U Setup for Counting

efficiency up to 200 nm

- Multiple charge correction (MCC) for particle > 50 nm, ratio < 5%
- Linearity for mono- and polydisperse soot particles (up to 800k)
- \rightarrow Deliverable as guideline for stakeholders

Round Robin metric

- Counting efficiency of PN analyser
- Linearity of PN analyser in PEMS:
 - Monodisperse particles
 - Polydisperse particles

- Particle concentration reduction factor (PCRF)
- Dilution factor of PN analyser
- Particle Penetration efficiency
- Volatile Particle removal efficiency

Validation of NMI capabilities with PEMS-CPC

based

- To ensure high quality measurements
- Important step to harmonize and to minimize measurement uncertainties

Cambridge Particle meeting by NPL, Mohsen Kazemimanesh

GOALS for RR:

Counting efficiency, mono

- Generator: Triple flame miniCAST 5303C
- Thermostable soot at 23, 30, 50, 70, 100, 200 nm
- MCC approach implemented
- → Good agreement by partners

26th ETH Nanoparticles Conference

DOI: https://doi.org/10.1007/s40825-021-00189-z

Linearity, mono

10 min. each concentration level for 2500, 5000, 7500, > 10 000 cm-3

 \rightarrow Fairly good agreement by partners (± 5%), especially for 70 nm

Linearity, poly - Lab

Check of response up to 1.1 Mio particle/cm⁻³ at 70 nm (CMD, poly)

26th ETH Nanoparticles Conference

Linearity, poly - infield

- A spark discharged generator and CPC + Diluter was used as calibration setup
- Check of response up to 12 Mio particle/cm⁻³ at 70 nm (CMD, poly)

Conclusion

- A harmonization process was established between NMIs
- First round robin between NMIs in Europe with traveling PN-PEMS
- Good agreement was figured out for monodisperse test
- Polydisperse test at high number conc- level shows higher variation up to 10 %
- For infield validation we recommended:
 - \rightarrow Higher measurement uncertainties for linear response check
 - → An infield check of PN-sensors with Particle generator (PG) and
 reference PN setup (CPC + Dilution unit, DU), especially for
 gasoline cars

26th ETH Nanoparticles Conference

Thank you for attention, any question you may have?

This project 19ENV09 MetroPEMS has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

Appendix 1: MCC approach

 Investigation by Mamakos, 2016 et al (DOI 10.1080/02786826.2016.1153034) for 150 nm

Mobility diameter of singly charged particles [nm]

 MCC approach as example for 70 nm at Maximum of polydisperse PNSD

→ Charge states of each peaks have to be calculated for the right-hand side of PNSD → ISO 27891 Annex, Part D. 3, called as 2U and 3 U assumption (Approach of Multiply Charge Correction)

Appendix 1: MCC approach

) | | | | | |

• Cut out on the right-hand side of polydisperse PNSD to avoid additional right hand side peaks for MCC spectra

Appendix 2: mono CE -additional plots

