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Context - I/II 
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“[Contrails] are line-shaped ice clouds 
generated by jet aircraft cruising in the 
upper troposphere [between] 8 – 13 km” [1]

• Global aviation contributed 3.5% to net 
effective radiative forcing (ERF) in 2011.

• Non-CO2 forcing agents contributed 66% 
to aviation-derived ERF in 2018 [2]
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[1] B Kärcher., 2018; [2] Lee et al., 2018



Context - II/II
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A B C D

(A) Exhaust nvPM 
emissions:
1011 – 1016 particles 
(kg fuel)-1 [3]

(B) Adsorption
of (semi) volatile 
material modifies 
nvPM properties
[4]

(C) Activation of 
nvPM particles to 
form droplets 

(D) Nucleation
to form ice 
crystals, which 
grow by 
deposition of 
water vapour

[3] ICAO, 2023; [4] Kärcher et al., 2015 
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Is nvPM the only particle type 
we should be considering?



Future Emissions

• Short-term: ICAO regulations on nvPM emissions [5]

• Mid-term: adoption of sustainable aviation fuels (SAFs)

• Long-term: development of electric/hydrogen aircraft

Decreased nvPM particle emissions

Increased relative emissions of other, 
combustion-related sources 

Regulatory/technological changes:

Consequences:

[5] ICAO, 2017; [6] (figure on right annotated from) Kärcher, B & Yu, F, 2012
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“Lubrication oil emission can be a
significant component of organic 
PM in aircraft engine exhaust.”
[7 - Z Yu et al., 2012]

“[In near-runway samples] organic 
compounds in the ambient nanoparticles 
[< 30 nm] were dominated by nearly 
intact forms of jet engine lubrication oil.”
[9 - A Fushimi et al., 2019]

“We unambiguously attribute the majority of 
detected compounds [in near-runway sampled 
particles < 50 nm] to jet engine lubrication oils.”
[8 - F Ungeheuer et al., 2020]

“Jet oil nucleation… can explain the 
abundant observations of high number 
concentrations of non-refractory 
ultrafine particles near airports.”
[10 - F Ungeheuer et al., 2022]

Lubrication Oil
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Research Objectives

(1) Assess the ability of ultrafine lubrication 
oil droplets to act as contrail ice-forming 
particles

(2) Determine the freezing pathway of 
ultrafine lubrication oil droplets

(3) Comment on implications in the 
soot-rich and soot-poor regime

Not to scale



Experimental
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1. Nebulize jet lubrication oil to produce droplets
2. Size select droplets: !Dp = (100.9 ± 0.1) nm 
3. Investigate activation/freezing microphysics of droplets

Methodology

[11] O Möhler et al., 2021

Size Distribution
Measurements (SMPS)

1
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Droplet 
Generation

2 Particle Sizing
(AAC)

Expansion Chamber
Measurements (PINE) 3



Activation - I/IV
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Example Individual Expansion

Si, onset =
pwater, onset

pice, onset (Tonset)
=
Pchamber, onset ( )
Pchamber, initial ( )

pice, initial (Tinitial )
pice, onset (Tonset )

Initial Onset



Activation - II/IV
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Collective & Averaged Onset Positions

All Data
(45 expansions)

Averaged Data



Activation - III/IV
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• Onset positions for lubrication oil droplets consistent with κ ~ 0 
• Lubrication oil droplets are insoluble and hydrophobic

Material Hygroscopicity 
parameter (κ)

Table salt 
(NaCl) [13]

1.1

α-Pinene 
(SOA) [12]

0.02 – 0.07

Lubrication oil 0

Hydrophilic

Hydrophobic

Hygroscopicity Analysis (κ-Köhler)

[12] M Petters & S Kreidenweis, 2007; [13] P Zieger et al., 2017



Activation - IV/IV
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• Soot particles [14] activate under milder supersaturations than lubrication oil 
droplets.

[14] K Gao & Z Kanji., 2022; [15] A Bier et al., 2022 

• Lubrication oil droplets could compete for contrail plume supersaturations [15].
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What about the freezing 
behaviour?



Ice Nucleation - I/IV
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5.3 µm

Warmest chamber temperature:  Tc = 248.0 K (To = 244.2 K) 

• Majority of particles identified in the water droplet mode (activated lubrication oil 
droplets) at the warmest chamber temperature.



Coolest chamber temperature:  Tc = 230.2 K (To = 224.9 K) 

Ice Nucleation - II/IV
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14.5 µm

• Majority of particles identified in the ice crystal mode at the coolest
chamber temperature.



15.4 µm

3.4 µm

Ice Nucleation - III/IV
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Intermediate chamber temperature:  Tc = 244.5 K (To = 240.0 K) 

• Ice crystals nucleate from growing water droplets (activated lubrication oil droplets)
• This is condensation followed by _____ freezing



Ice Nucleation - IV/IV

• Ice nucleation onset at Thom~ 
235 K, consistent with 
homogeneous freezing [16]

• Lubrication oil droplets freeze 
by condensation followed 
by homogeneous freezing
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Our results

Freezing Mechanisms (from liquid phase)

Thom (Ṫ, V) 

Homogeneous 

Thet (≥ Thom) 

Heterogeneous 

[16] B Murray et al., 2012  



Conclusions & Future Work

Ongoing/Future Work

Summary

• Decrease in nvPM emissions will lead to an increase
in relative lubrication oil emissions 

• Production of representative nvPM using a portable 
inverse diffusion flame combustor

• Explore ice nucleation for mixed populations of nvPM 
and lubrication oil droplets

Oil

nvPM

ThomTo

• Nucleation of ice by condensation
followed by homogeneous freezing

• Important in low-soot regime
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Thank you, any questions?
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