The Influence of a Diesel Particulate Filter with Low-Temperature Regenerability on Diesel Engine Emissions

John Paul Santos, Yun-Chi Hsu, Lin-Chi Wang*

Lin-Chi Wang, Professor Department of Environmental Engineering, Chung Yuan Christian University

Emissions of diesel engines

- Diesel engines are emission sources for various pollutants, including nitrogen oxides (NOx), sulfur oxides (SOx), particulate matter (PM), hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and halogenated persistent organic pollutants (POPs).
- International Agency for Research on Cancer (IARC) identified diesel engine exhaust as a group 1 risk, due to the carcinogenic impact it can have on human health.
- The World Health Organization (WHO) ambient air PM2.5 guidelines (an annual mean of 5 µg/m³ and a 24-h mean of 15 µg/m³), and the increasingly strict air quality standards for PM2.5.

Reduce PM emissions from vehicular exhaust

- Engine innovations- still face many technical problems which are hardly satisfied with more stringent PM emission regulations (PN limits)
- Cleaner fuels
- Aftertreatment devices

Diesel particulate filters (DPFs), Gasoline particulate filters (GPFs), Particle Oxidation Catalyst (POC)

DPFs

DPFs are currently the most effective way to reduce the PM emitted from diesel engines (PM capture efficiency is higher than 95%).

- The accumulation of PM leads to an increase of engine back pressure that adversely affects the engine fuel efficiency.
- The engine will ultimately cease to function if no action was applied to remove the accumulating PM.
 - Fang et al, (2019) •

Regeneration Soot ignition temperature T_{10} (at which soot conversion reaches 10%) >450 °C

Active regeneration

□ fuel burner or electrical heater

□ to increase the DPF inlet temperature to 550 °C or higher for regeneration (Ko et al., 2016)

Passive regeneration

Typical diesel engine exhaust temperatures during normal driving cycles fall within the 200–400 °C range. (Fino et al., 2016)

Fuel borne catalysts; Diesel oxidation catalysts (DOC)

Research Purposes

DOC+DPF Performance

Cold start and hot start of the heavy-duty diesel engine with and without DOC+DPF deployment.

DPF Regeneration Ability

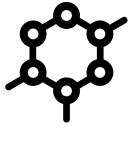
Different Catalyst Proportions and Their Effects on Regeneration

Influence of DPF conditions

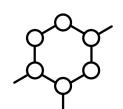
- Diesel engine emissions under the following conditions:
- New DPF
- During regeneration
- Post-regeneration

To reach the condition that the DPF needs to be regenerated, the engine idled for 30 hours to accumulate soot inside DOC+DPF

Target Pollutants


Traditional Pollutants

- PM_{2.5}
- CO₂, CO, HC, NOx, SO₂
- EC/OC

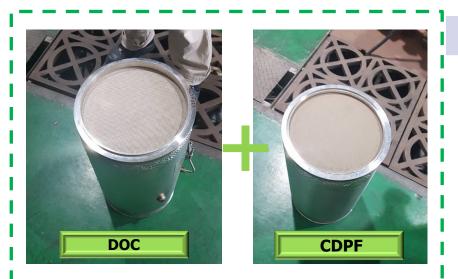

HAPs

- Heavy metals
- VOCs
- PAHs
- POPs (PCDDFs, PCBs, PBDDFs, PBDEs)

Samplings and measurement

Diesel Engine Dynamometer

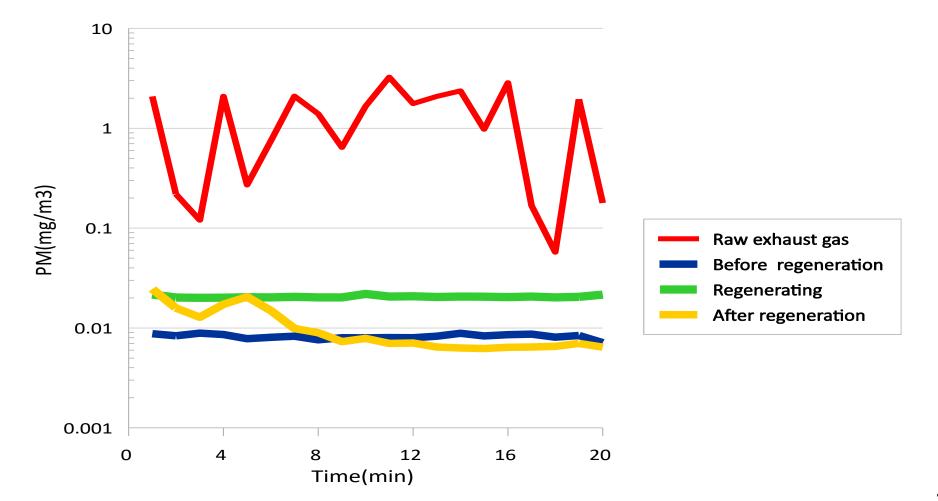
Real-Driving Emissions (RDE)


Real-Driving Durability Test

Diesel Engine Dynamometer Test

Engine mounted on dynamometer

- The tested engine is Cummins ISC 315 (Euro III).
- The engine was mounted and operated with a dynamometer to provide the testing power and torque.
- The testing followed the US EPA Federal Transient Cycle Procedure (FTP Transient Cycle).



Pollutant Reduction emitted by the engine under different conditions

Conditions	CO (g/bhp-hr)	THC (g/bhp-hr)	NO _X (g/bhp-hr)	PM (g/bhp-hr)	Smoke (m ⁻¹)
Raw Exhaust	1.38	0.213	3.29	0.108	0.64
	₽	Ţ	Ţ	<u> </u>	,,
New DPF	• 91. 0.122	2% v 100%	3.11	• 96.9 0.0033	% 100% 0.00
During Regeneration	0.165	0.004	3.12	0.0054	_
Post- Regeneration	0.0966	0.004	3.12	0.0023	-

Real-time PM emissions of heavy-duty diesel engines under different DOC+DPF conditions

Impact of high soot-loaded and regenerated diesel particulate filters on POP emissions from a diesel engine fueled with waste cooking oilbased biodiesel

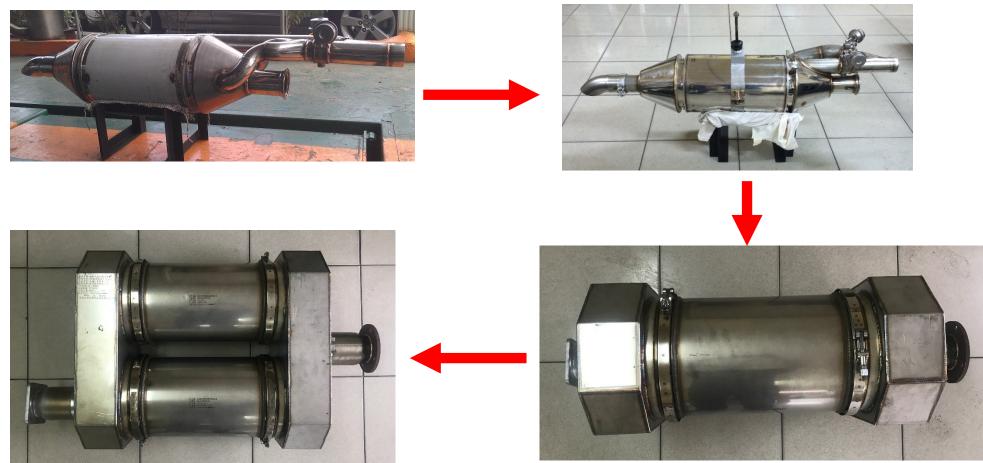
	B2			B10					
	Before DOC+A- DPF	After DOC+A- DPF	ratio	Before DOC+A- DPF	After DOC+A- DPF	ratio	Before DOC+A- DPF	After DOC+A- DPF	ratio
PM _{2.5} (mg/L)	122	19.6	0.16	155	17.5	0.11	133	9.61	0.07
PAHs (µg BaP _{ea} /L)	1.70	0.363	0.21	1.62	0.198	0.12	0.922	0.277	0.30
PCDD/Fs (pg WHO-TEQ/L)	17.3	45.5	2.6	10.3	15.2	1.5	4.59	7.67	1.7
PCBs (pg WHO-TEQ/L)	1.89	5.97	3.2	1.88	1.15	0.61	0.665	0.407	0.61
PBDD/Fs (pg WHO-TEQ/L)	6.26	7.05	1.1	3.78	2.17	0.57	2.56	1.64	0.64
PBDEs Mass (ng/L)	87.3	104	1.2	61.1	31.1	0.51	34.7	28.5	0.82
Chen, Wang* et al., Appl. Energy (2017) Thighly Cited Pap									

cnen, wang* *et al., Appl. Energy* (2017)

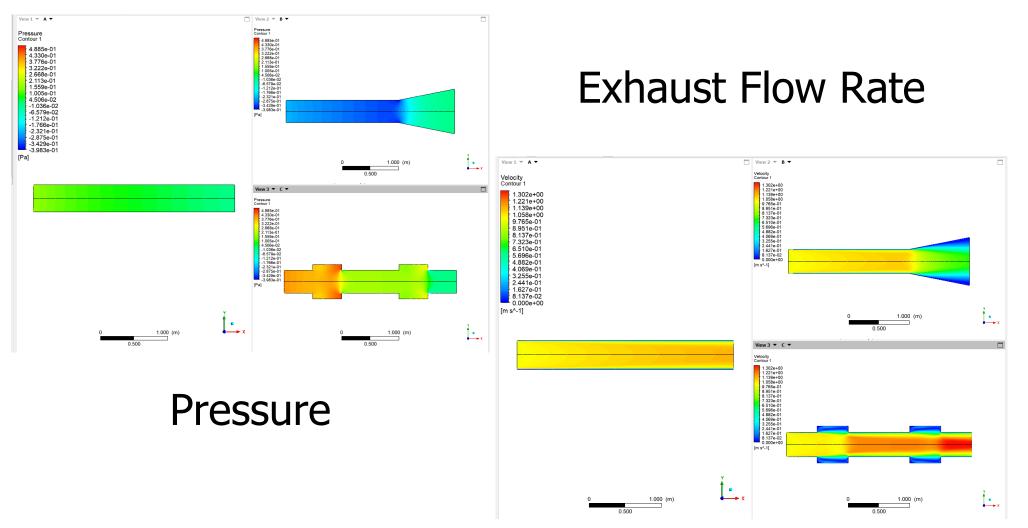
POPs於DPF前後之氣固相分布

 $\overline{C_{1,p}} = \frac{C_{1,DOC} \times W_{1,p}}{V_1} \quad (\text{particle-phase} \cdot \text{POP} \cdot \text{concentrations} \cdot \text{before} \cdot \text{DOC} + \text{DPF}) \quad \\ \overline{C_{1,g}} = \frac{P_{1,g} + (P_{1,p} - \overline{C_{1,p}} \times V_1)}{V_1} \quad (\text{gas-phase} \cdot \text{POP} \cdot \text{concentrations} \cdot \text{before} \cdot \text{DOC} + \text{DPF}) \quad \\ \overline{C_{2,p}} = \frac{C_{2,DPF} \times W_{2,p}}{V_2} \quad (\text{particle-phase} \cdot \text{POP} \cdot \text{concentrations} \cdot \text{after} \cdot \text{DOC} + \text{DPF}) \quad \\ \overline{C_{2,g}} = \frac{P_{2,g} + (P_{2,p} - \overline{C_{2,p}} \times V_2)}{V_2} \quad (\text{gas-phase} \cdot \text{POP} \cdot \text{concentrations} \cdot \text{after} \cdot \text{DOC} + \text{DPF}) \quad \\ \end{array}$

The corrected gas- and particle-phase partitioning of PCDD/Fs and PBDEs in the raw and treated exhausts.

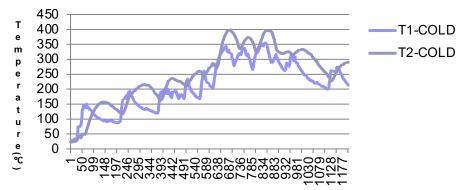

PCDD/Fs		A-DPF trial				R-DPF trial			
homologues		Before DOC+A-DPF		After DOC+A-DPF		Before DOC+R-DPF		After DOC+R-DPF	
		Partide	Gas	Particle	Gas	Particle	Gas	Partide	Gas
TeCDD	%	2.6	97.4	3,9	96,1	2,2	97,8	0,5	99,5
PeCDD	%	2,6	97.4	0.4	99.6	3,4	96.6	0.0	100
HxCDD	%	3,0	97.0	8,1	91,9	1,3	98,7	0,3	99.7
HpCDD	%	3,2	96,8	3,3	96.7	2,3	97.7	0.4	99.6
OCDD	%	32	96,8	3.1	96,9	2.5	97.5	0.3	99.7
TeCDF	%	2,8	97.2	10,3	89.7	2.7	97,3	0.4	99,6
PeCDF	%	2,8	97.2	8,4	91.6	1.0	99.0	0.1	99,9
HxCDF	%	3.0	97.0	5.7	94,3	1.4	98,6	0.4	99,6
HpCDF	%	3,0	97.0	2,3	97.7	1,9	98.1	U.1	99,9
OCDF	%	3,3	96,7	5,9	94.1	1,9	98.1	0.6	99.4

Formation mechanism of POPs in diesel engines is mainly through homogeneous gas-phase formation

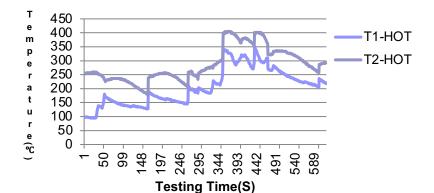

Heterogeneous precursor pathway and de novo synthesis occurred, when exhausts passed through DPF.
16

DOC + DPF with Low-Temperature Regenerability

Catalyst type and ratio, catalyst coating method, DPF structure



Computational Fluid Dynamics (CFD) Simulation


Reduction efficiency of DPF on PCDD/Fs

DPF	DPF#1				DPF#2			
	New	DPF	After regeneration		New DPF		After Regeneration	
Conditions		Hot start	Cold start	Hot start	Cold start	Hot start	Cold start	Hot start
Total PCDD/F WHO-TEQ	-0.2%	84.8%	18.9%	64.8%	86.6%	74.3%	88.0%	75.4%

Testing Time(S)

Condition	Time	(%)
T>220°C	763	63.27%
T2-T1>30°C	767	63.60%
T2-T1>50°C	501	41.54%

Condition	Time	(%)
T>220°C	1045	86.65%
T2-T1>30°C	855	70.90%
T2-T1>50°C	620	51.41%

Opacity and Power

Method and procedure for testing opacity of black smoke emission from diesel vehicles

HORIBA-600S Opacimeter

Opacity and Power

Raw Exhaust (without DOC+DPF)

		Power	Ratio										
Test Loa	d Engine Torque	1	2	Max Value	Power Ratio	_	a to al Es						
100%	2100	2089 rpm	2092 rpm	261.7	93%			Treated Exhaust (with					
10070	rpm	261.7 kW	261.1 kW	kW	kW 95%		CTUPI						
Exhaust Opacity								Power	Ratio				
		Exhaust	Opacity			Test Loa	d Engine	1	2	Max Value	Power		
Run	1	2	3	A	verage	Test Lua	u Torque	I	Z	Max value	Ratio		
Results	1.33 m ⁻¹	1.36 m ⁻¹	1.36 m ⁻	-1	1.3 m ⁻¹		1 2 m ⁻¹		2100	2134 rpm	2118 rpm	260.2	020/
Results	2555 rpm	2561 rpm	2554 rp	om 📕			rpm	259.3 kW	260.3 kW	kW	93%		
Phase 3 Standard: 1.2 m ⁻¹					m-1			Exhaust	Opacity				
						Run	1	2	3	1	Average		
						Doculto	0.03 m ⁻¹	0.04 m ⁻¹	0.04 m	-1	01		
						Results	00	0.550	2540	U	.0 m ⁻¹		

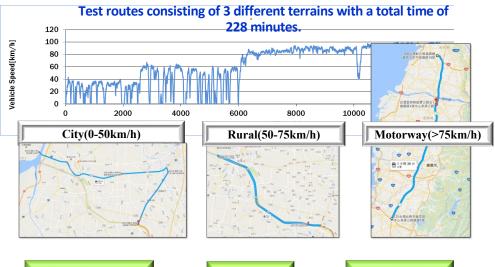
2552 rpm

Phase 5 Standard: 0.6 m⁻¹

2548 rpm

2553 rpm

Real-Driving Emissions (RDE)



Portable Emission Measurement Systems (PEMS) Monitoring

According to Euro VI-C regulations, test routes should include urban, rural, and motorway drivings differentiated by vehicle speed.

- City <50 km/hr
- Rural 50~75km/hr
- Motorway >75 km/hr

The total mileage is 216 kilometers (about 3 hours driving)

		Raw exhaust	Treated	
РМ	mg/m ³	18.8	0.0583	99.7%
тнс	g/km	0.36	0.03	91.7%
CO	g/km	3.09	1.35	56.3%
CO ₂	g/km	751.09	781.59	
NOx	g/km	13.79	14.41	24

Real-Driving Durability Test 15,000km (~ 3 months of driving)

Test Points	Driving Time	Opacity	Power ratio
Before installation	0	1.3 m ⁻¹	93%
After installation	0	0 m ⁻¹	93%
10,000 km travelled	2 months	0 m ⁻¹	96%
15,000km travelled	~3 months	0 m ⁻¹	98%

Conclusion

- The DOC+DPF with low-temperature regenerability developed in this research has no effect on the horsepower of heavy-duty diesel engines, and has great reduction on CO, THC, particulate matter and opacity, regardless of dynamometer or real-driving test.
- Passive regeneration can be started at 180°C, and more than 60% of the time, the DPF was in regeneration. This effectively inhibit the formation potential of PCDD/Fs, and further reduce 74.3%-88.0% of PCDD/F emissions.
- The durability test showed that the exhaust opacity of heavy-duty diesel vehicle deployed with the DOC+DPF was still 0 m⁻¹ after 15,000 kilometers of driving.

Thank you for your time.