26th ETH Nanoparticles Conference, **2023**

FIELD STUDY ON THE IMPACT OF SUSTAINABLE AVIATION FUELS ON HELICOPTER ENGINE EMISSIONS

Tobias Schripp¹, Tobias Grein¹, Marlin Beuse², Burkhard Schneider²

¹German Aerospace Center (DLR) Institute of Combustion Technology "Emission & Air Quality" team

²ADAC Luftrettung gGmbh

Emission data of helicopter engines

In the second second

Theo Rindlisbacher / Lucien Chabbey

Guidance on the Determination of **Helicopter Emissions**

Reference: COO.2207.111.2.2015750

DLR-Project: ELK (emission map)

-> Engine emission inventory

https://verkehrsforschung.dlr.de/de/ projekte/elk

Aircraft ICA			1 I I I I I I I I I I I I I I I I I I I		LTO Emissions						One hour emissions						
	Aircraft ICA	Aircraft Nam	Engine Nam	Max SHP per	Number of					TO PM non	I TO PM	One hour	One hour	One hour HC	One hour CO	One hour PM	One hour PM
	0	е	e	engine	Engines	LTO fuel (kg)	LTO NOx (g)	LTO HC (g)	LTO CO (g)	volatile (g)	number	fuel (kg)	NOx (kg)	(kg)	(kg)	non vol. (g)	number
		SIKORSKY															
	S76	S76	PT68-36A	981	2	59	499.9	573.6	547.2	11.6	3.463E+16	360	2.99	1.3	0.79	85	1.25E+18
		AGUSTA															
	A119	A119	PT68-37	900	1	31.5	210.5	87.3	288.8	6.4	3.3274E+16	216	1.77	0.07	0.78	54	1.78E+18
		AUGUSTA															
	A139	A139	PT6T-3D	1800	2	55	312.8	250.1	689.6	12.7	4.6879E+16	360	2.56	0.26	1.98	112	3.68E+18
	B412	Bell 412	PT6T-3	1800	2	55	419.5	797.4	873	12.7	4.6879E+16	360	4.1	1.76	1.12	112	3.30E+18
		AGUSTA		1000	1000												
	A139	A139	P16C-67C	1100	2	60.4	377.5	739.7	949.1	11.8	3.939E+16	412.2	3.55	1.3/	1.65	101	3.33E+18
	EXPL	MD 900	PW206A	621	2	30	127.7	5//.5	1158.2	6	3.0591E+16	223.2	1.08	0.8/	3.39	43	7.88E+17
		AGUSTA	-						1010 7								
A109	A109	A109E	PW206C	550	2	34.0	159.9	629.1	1216.7	5.4	2.9/51E+16	194.4	1.01	1	3.13	35.8	1.18E+18
	4400	AGUSTA	The second	250		24.0	457.2	6399 T	1000 0		20045.40		0.00	0.0000			4 455.40
	A109	Roll 427	PW2070	670	2	34.9	157.3	032.7	1220.0	5.8	3.004E+10	107.4	0.93	0.9098	3.4	30	1.10E+18
	EVDI	LIGE 921	DIA/2070	420	2	34.9	100.4	£43.1 657.0	1227.2	5.0	2 8302E+40	212.0	1.19	0.00	1.91	3/	6.53E+17
	EAFL	AS 365 C4	TWZUIE	469	6	30.9	120.4	0.100	12213	0.4	2.0.JUZE * 10	212.0	1.00	0.83	311	30	0.000-17
	4585	DALIPHIN	ADDIEL 1A4	641	2	110	210.7	764 7	000 6	74	3 07355+40	024	4.7	1.47	1 02		1.515+10
	n303	AS 365 C2	PRINCE IAI	Out.	2	41.0	210.7	101.7	500.0	1.1	5.0133E 10	201	1.7	1.97	1.05	51	1.512.710
	4985	DALIPHIN	APPIEL 1A2	641	2	41.6	210.7	761.7	088.5	7.1	3.0735E+16	261	17	1.47	1.83	51.2	1.51E+18
-	1600	AS 350	PRIVILL INC	011		41.0	210.1	101.1	000.3		3.0733L-10	201		1.40	1.05	51.2	1.512-10
	4535	ECUDEUII	ADDIEL 18	641		23.4	128.2	289.6	370.6	42	3 01555+16	133.2	0.07	0.6	0.75	20	0 30E+17
-	1000	AS 365 N	PROLE ID	041		23.4	120.2	205.0	370.0		3.0133E 110	130.2	0.37	0.0	0.75		2.326.11
	4985	DALIPHIN	ARRIEL 1C	660	2	42.2	217.7	753	076.8	72	3 0984E+18	265.2	1.75	1.45	18	53	1 55E+18
	1000	AS 365 N1	FEGULETO	000	-	76.6		100	010.0	1.6	0.00012.10	200.2	1.30	1.40			1.006 10
4565	ASES	DAUPHIN	ARRIEL 1C1	700	2	43.4	231	724.2	938	7.6	3 143E+16	274 3	1.87	1.41	173	56	1.65E+18
-	16003	AS 365	FUTULE IOT	100	-			167.6		1.0	5.1452.110	114.0	1.07	1.41	1.15		1.000-10
	4585	DAUPHIN	ARRIEL 1C2	763	2	45.2	253.8	879 1	877.4	82	3 2145E+16	289.5	2.08	1 35	168	61	1.81E+18
_	1000	AS 350B	TRUCCE TOE	100	-			010.1	017.1		OLTIOL IO	200.0	2.00				1.012 10
	A\$35	ECUREUIL	ARRIEL 1D1	732	1	25.2	149.7	266.8	339.6	47	3.1321E+16	146.5	1.16	0.57	0.7	33	1.10E+18
-		AS 550															
	AS50	FENNEC	ARRIEL 1D1	732	1	25.2	149.7	266.8	339.6	4.7	3.1321E+16	146.5	1.16	0.57	0.7	33.4	9.87E+17
		AS 555															
AS55	A\$55	FENNEC	ARRIEL 1D1	712	2	43.8	235.5	713.8	924.1	77	3.1554E+16	277.1	1.91	1.4	1.72	57	1.68E+18
		AGUSTA					-										
	A109	A109 K2	ARRIEL 1K1	738	2	44.6	246	700.8	907	8	3.1915E+16	255	1,79	1.24	1.53	53	1.75E+18
	BK17	BK117	ARRIEL 1E2	738	2	44.6	246	700.8	907	8	3.1915E+16	283.3	1.98	1.38	1.7	59	1.74E+18
	BK17	BK117 C-2	ARRIEL 1E2	738	2	44.6	246	700.8	907	8	3.1915E+16	283.3	1,98	1.38	1.7	59	1.74E+18
	A\$35	AS 350 B3	ARRIEL 2B	848	1	27.6	180.5	247.7	313	5.5	3.2659E+16	151.6	1.3	0.51	0.62	37	1.22E+18
	AS35	AS 350 B3	ARRIEL 2B1	848	1	27.6	180.5	247.7	313	5.5	3.2659E+16	151.6	1.3	0.51	0.62	37	1.22E+18
	EC30	EC 130 B4	ARRIEL 2B1	848	1	27.6	180.5	247.7	313	5.5	3.2659E+16	182.6	1.57	0.61	0.75	44.6	1.32E+18
		AS 365 N3															
	AS65	DAUPHIN	ARRIEL 2C	839	2	47.8	286	642.6	826.6	9	3.2984E+16	308.9	2.35	1.31	1.61	68	2.01E+18
	EC55	EC 155 B	ARRIEL 2C1	839	2	47.8	286	642.6	826.6	9	3.2984E+16	308.9	2.35	1.31	1.61	68	1.24E+18
	EC55	EC 155 B1	ARRIEL 2C2	944	2	51.2	329.9	603.6	774.4	10.2	3.4164E+16	337.4	2.73	1.26	1.55	79	1.44E+18
		AS 350B3															
AS50	AS50	ASTAR	ARRIEL 2D	952	:1	29.5	206.6	231.1	291.3	6.2	3.384E+16	200.3	1.82	0.59	0.72	52	1.53E+18
	200	SIKORSKY	Second S	1000	200		1.000	2000	1000		20000	1 22202	2.82				
	S76	S-76 C+	ARRIEL 2S1	856	2	48.4	292	640.3	822.7	9.2	3.322E+16	313.4	2.38	1.3	1.6	70	1.02E+18
	1000	SIKORSKY			2222		0.000.00					2000	7.00				
	S76	S-76C++	ARRIEL 2S2	897	2	50	310.7	624.2	800.7	9.7	3.3679E+16	324.5	2.56	1.28	1.56	74	1.08E+18
	AS55	AS 355 N	ARRIUS 1A	480	2	35	150.5	883	1156.2	5.4	2.8801E+16	216.2	1.19	1.67	2.08	38	1.12E+18
	EC35	EC 135	ARRIUS 2B1	633	2	41.2	206.9	769.1	999.6	7	3.0715E+16	259.3	1.66	1.49	1.84	51	1.50E+18
	EC35	EC 135	ARRIUS 2B2	633	2	41.2	206.9	769.1	999.6	7	3.0715E+16	259.3	1.66	1.49	1.84	51	1.50E+18

Fuel-related emission indices are **not** available.

Experimental Overview

Emission measurements at ADAC hangar in Hangelar 03.11.2022 – Reference measurement, Jet A-1 09.11.2022 – SAF blend measurement

https://luftrettung.adac.de/first-rescuehelicopter-flies-on-sustainableaviation-fuel/

Fuel Properties

Regular Jet A-1 & Jet A-1/HEFA blend

- GCxGC analysis
- Hydrogen content (ASTM D7171)
 - Jet A-1 13.79 m%
 - SAF Blend 14.34 m%

Parameter and Instruments

- DMS500 (+ CS), 1 Hz Particle number, -size distribution (total/nv) SMPS (+ CS), 75 s Particle number, -size distribution (total/nv)
- Ecophysics CLD64/700, 1 Hz
- MKS Multigas FT-IR, 1 Hz
- LI-7200RS/LI-850, 1 Hz
- TSI 3776 CPC (ambient)

NOx CO2, CO, NOx CO2, H2O Particle number

Sampling challenges

Requirements

- Safe for the aircraft
- Fast removal
- No contact to helicopter
- Should not be affected by high power runs

Drawbacks

- No heated inlet
- No probe-tip dilution
- "Long" sampling line (20 m)

Experimental Setup – Test Matrix

- Three different power settings (FF 66 kg/h, FF 125 kg/h, FF 150 kg/h)
- Ground run for 10 min, 5 min and 5 min
- Similar fuel flow and torque conditions between reference and SAF experiment Comparable ambient conditions (cold, humid)

Comparability between reference and SAF measurement

- Both runs were repeated in an excellent manner
- The probe alignment was comparable between both runs
- The weather conditions of the reference run could have been better (variation at higher power settings)

NO_x Emission Index

- NOx emission between the two different runs deviate by approx. 5% (9% max.)
- The ambient temperature was not very different (approx. 2°C) but the reference run was accompanied by rain
- The difference is not significant to account for a possible fuel effect
- -> Comparable engine conditions

Particle Volume Size Distribution (nvPM)

Summary and Outlook

- Successful in-field measurement of a helicopter engine with good interday reproducibility
 Shift in particle number size distribution (agglomeration) allows no direct comparison of
- Shift in particle number size distribution emission indices
- Reduction in nvPM particle volume emission when switching from fossil Jet A-1 to SAF blend has been observed
- The reduction in emitted particle volume is quite stable over power settings ("cruise" reference elevated/drifting)
- No other trade-off effects (e.g. NOx) have been observed
- These results are relevant for improving local air quality at/near airports
- Future experiments need to cover oil emissions from the engine

THANK YOU FOR YOUR ATTENTION

T

NOTARZ

Impressum

Topic: Date: Author: Institute: Credits:

Field Study on the Impact of Sustainable Aviation Fuels on Helicopter Engine Emissions 20.06.2023 Dr. Tobias Schripp DLR Institut für Verbrennungstechnik, Stuttgart DLR, Google Maps

Reproduction of the images shown in the lecture is permitted only with the consent of the author.

