

Technion Internal Combustion E L Engine laboratory

An updated mechanism of particle formation in nonpremixed hydrogen combustion in internal combustion engines

Leonid Tartakovsky, Andy Thawko, Ben Holtzer and Michael Shapiro

26th ETH Nanoparticles Conference, Zurich, June 21 2023

Electric vehicle is not really the "silver bullet" solution

- Particle (PM) emissions similar to those of motor vehicles
 - Non-exhaust PM emission proportional to vehicle weight
 - Electric vehicle in average is heavier by 24% than the motor counterpart
- Major ecologic burden of battery materials production (human toxicity, soil acidification, water eutrophication...)
- Environmental impact of electricity production

Hydrogen is a great sustainable fuel for IC engine

- ✓ Wide flammability limits
- ✓ High burning velocity

✓ Contributes to better antiknock performance

However:

- ✓ No fueling infrastructure available
- ✓ Onboard storage is problematic

To remind: M_{H_2} = 2.016 g/mol, Boiling T = -253C

Onboard on-demand hydrogen production High-Pressure ThermoChemical Recuperation

Low reforming temperatures- 250-300 C

Tartakovsky L., Sheintuch M., Veinblat M., Thawko A., International Patent Application No. PCT/IB2020/056382, 2021

High-Pressure ThermoChemical Recuperation Performance

Poran, Thawko et al., Int. J Hydrogen Energy, 2018

Hydrogen vs Reformate combustion

- HP-TCR system efficiency is higher than H₂
- NO_x emission is near-zero for the reformate due to CO₂ presence
- Advanced EOI is favored because of better Fuel-air mixing

Thawko et al., Energy Conversion and Management, 2022

Total particle concentration comparison

Thawko et al., Int. J Hydrogen Energy, 2019

Total particle concentration comparison

Previous studies showed significant PN reduction with hydrogen combustion

Experimental setup- Research engine

Single cylinder, Petter AD1 based	
Bore x Stroke, mm	80x73
Displacement, cm ³	367
Compression ratio	15-17.3
Power, kW @ speed, rpm	5.3 @ 3000
Fuel injection system	Direct
	Port

A comparison of direct and port reformate injection

Particle formation- Direct vs Port Fuel Injection

Thawko et al., Int. J Hydrogen Energy, 2019

Increased particles formation for direct

injection

Excessive lubricant involvement in the

combustion

Underexpanded jet flow field

Fundamental investigation at ICE typical conditions

▶ <u>Goal:</u>

- Study of the transient underexpanded jet
- Detailed flow field characteristics

Method:

Schlieren & PIV technique for the near- and far-field characterization, respectively

Flow field characterization- Free flow jet

Air entrainment encouraged by the transient underexpanded jet

Flow field characterization- Impinging jet

Two rolled-up vortex regions with largescale motion are formed in the wall jet region

Is this the main entrainment mechanism?

15

Interaction of a gaseous impinging jet with a heated lubricated surface

Several experiments were preformed via Shadowgraph optical imaging Z-type configuration

- Perpendicular impinging jets were traced along the free, piston and liner jet regimes for further understanding of the entrainment mechanism
- The jets were injected onto heated piston and lubricated liner like surfaces to clarify the lubricant vapor entrainment phenomena

Holtzer & Tartakovsky, SAE Technical Paper 2023-01-0308, 2023

Main lubricant entrainment mechanism

Holtzer & Tartakovsky, SAE Technical Paper 2023-01-0308, 2023

Particle formation mechanism in non-premixed H₂ combustion

Non-premixed combustion of gaseous fuel - fuel type effect on particle emission

Summary

- Excessive particle formation was discovered with reformate/hydrogen compared to hydrocarbon fuels
- Reformate/hydrogen direct injection results in higher particle formation compared to port fuel injection
- Particle formation mechanism in non-remixed hydrogen combustion was described
- Sweeping is the main lubricant vapor entrainment mechanism into the combustion chamber bulk
- Longer injection duration results in a higher particle formation

Acknowledgments

הקרן הלאומית למדע المؤسسَّية الإسرائيلية للعلوم Israel Science Foundation

תוכנית האנרגיה ע״ש גרנד

Q & A

Thank you for your attention!

Prof. Leonid Tartakovsky

Email: tartak@technion.ac.il

