StanBC: Standardisation of Black Carbon aerosol metrics for air quality and climate modelling

Alexandre Bescond, Laboratoire national de métrologie et d'essais, France; Eija Asmi, Finnish Meteorological Institute, Finland; Griša Močnik, Institut Jožef Stefan, Slovenia; Jorge Saturno, Physikalisch-Technische Bundesanstalt, Germany; Luka Drinovec, Haze Instruments, Slovenia; Kostas Eleftheriadis, National Center for Scientific Research "Demokritos", Greece; Krzysztof Ciupek, National Physical Laboratory, UK; Thomas Mülller, Leibniz Institut für Troposphärenforschung, Germany; Ernest Weingartner, University of Applied Sciences Northwestern Switzerland, Switzerland; Konstantina Vasilatou, Federal Institute of Metrology METAS, Switzerland; Greg Smallwood, National Research Council, Canada

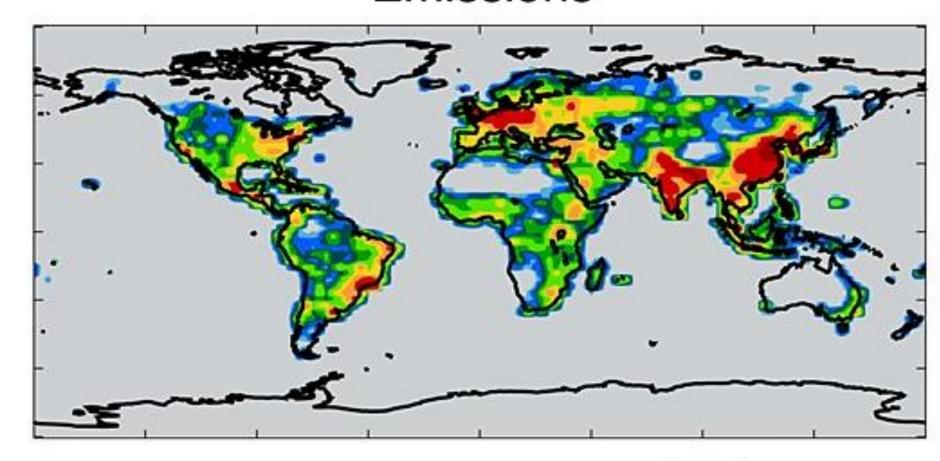
The need:

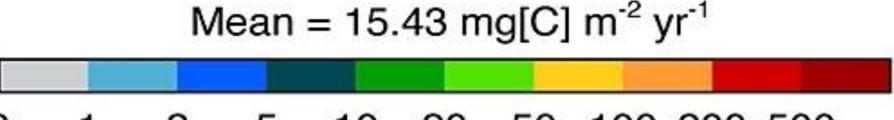
- 1. Black carbon (BC) contributes to global warning
- 2. In 2019, about 300 000 premature deaths in the EU were attributed to fine particulate matter in ambient air. BC-containing particles from combustion sources are deemed as carcinogenic.
- 3. The lack of standard methodology for BC mass concentration have not allowed incorporating it into the Air Quality legislation

Question:

How to establish new standards for the determination of aerosol light absorption and Black Carbon mass concentration (BC)?

 $\frac{b (m^{-1})}{MAC (m^2/g)}$

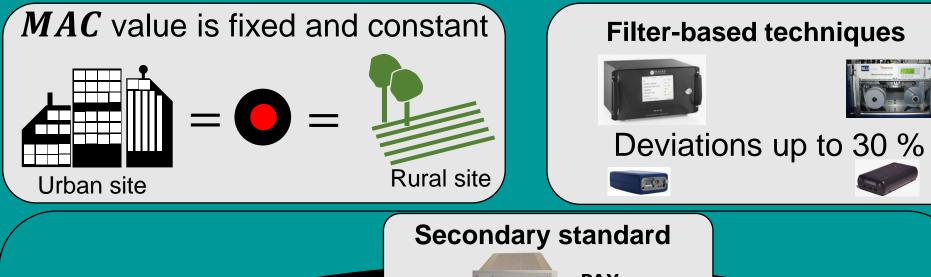

Aerosol light absorption coefficient (b) Mass absorption cross section (MAC)

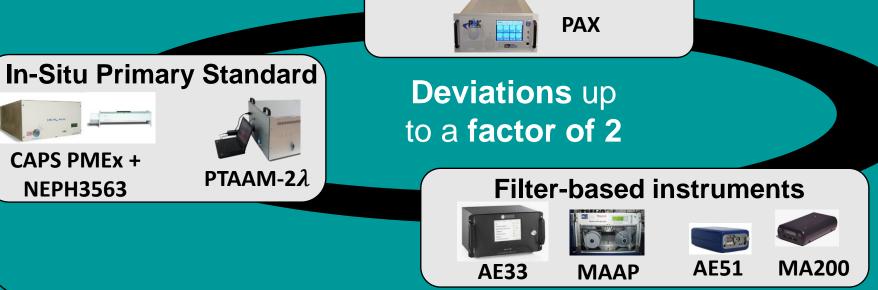

Scientific objectives to address this question:

- 1. WP1: To standardise and calibrate in situ reference methods for aerosol light absorption coefficient
- 2. WP2: To standardise methods for the measurement of mass absorption cross-section (MAC)
- 3. WP3: To standardise methods for calibrating filter-based photometers against the reference methods
- which describes 4. WP4: To develop a new CEN standard traceable methods for BC-related metrics
- 5. WP5: To facilitate the uptake of the technology and measurement methodologies developed in the project

Bond, T. C., et al. (2013), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380-5552, doi:10.1002/jgrd.50171.

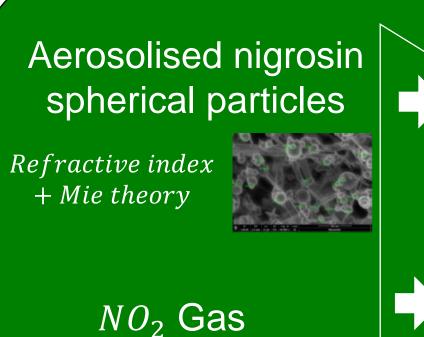
Emissions





100 200 500

State of the art:


The EN 16909:2017 is the only existing relevant standard on the measurement of EC mass collected on filters

Institut "Jožef Stefan" NPLO NRC-CNRC THE METAS **TROPOS** HAZE Stakeholders Department Umwelt 🎧 **Bundesamt AETHLABS** Sunset Laboratory In cen acoem Empa **INERIS** maîtriser le risque | pour un développement durable |

Environment Agency

Partners

Primary standards CALIBRATION

Extinction Minus Scattering (EMS) Photo thermal Interferometry (PTI)

> **Secondary standards EQUIVALENCE TESTING**

Photoacoustic (PAX)

Traceable light absorption coefficient $b \ (Mm^{-1})$

Target uncertainty

< 10% (95% confidence level) WP2 (Objective 2) **Primary standards CALIBRATED Instruments Extinction Minus** $b (Mm^{-1})$ Reference Scattering (EMS) aerosols Photo thermal Fresh soot Interferometry (PTI) Mass absorption cross-section $MAC(m^2/g) = \frac{}{EC_{mass}}$ Standardised Method EC mass determination EC_{mass} (EN 16909:2017) (g/m^3)

Academia

Legislators and regulatory bodies

Stakeholder Committee

WP5 (Objective 5)

- Instrument manufacturers
- Air quality and metrological networks.

Knowledge transfer

- National and international presentations
- Peer-reviewed publications
- Open access website
- Special conference session + Symposium
- 2 Workshops + Training sessions
- New CEN standard.

WP4 (Objective 4)

New working group within CEN/TC 264

Traceable reference methods for determining aerosol light absorption coefficients at multiple wavelengths

Materials, methods and correction factors for calibrating filter-based photometers against the reference method(s)

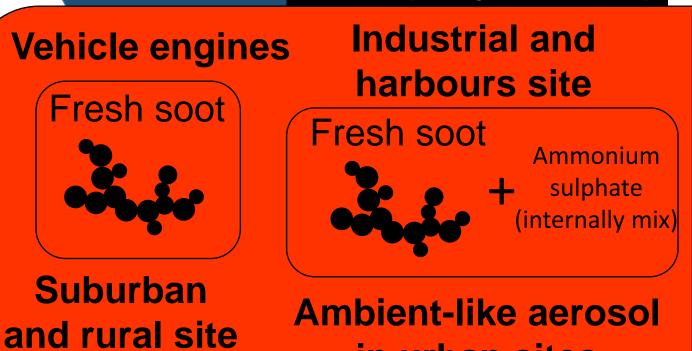
Exploitation

- New instrument SOPs
- New calibration and consultation services.

Impacts

Scientific:

- Improved Climate and Air Quality Models,
- Better understanding of the inter-connection between Black Carbon climate and Air Quality impact in short and long-term time resolution and local to global coverage,
- More reliable international data to help authorities and regulators improve their climate change and urban pollution mitigation strategies.


Socio-economic:

- Better protection of public health,
- Market share growth for EU instrument manufacturers,
- Input for revision of air quality legislation based on Black Carbon.

The EPM initiative is co-funded by the European Union's Horizon Europe research and innovation programme and the EPM Participating States

WP3 (Objective 3)

Aged soot

in urban sites

Aged soot Ammonium sulphate and

mineral dust

Traceable light absorption coefficient b WP2 **Mass absorption**

WP1

MAC

Target candidate method

Uncertainty

< 15% (95% confidence level)

cross-section

Filter-based photometers Wearable filter-based photometers

 $eBC(g/m^3)$ **Candidate Method** Photo-acoustic instruments

eBC mass

concentration