Physical properties of virus-containing aerosol particles

How high is the protective effect of masks?

Ernest Weingartner Tobias Rüggeberg Nadine Karlen

Particle Technology Group Institute for Sensors and Electronics University of Applied Sciences (FHNW) Windisch, Switzerland

What do these airborne particles have in common?

Freshly emitted diesel soot particle

- Their small size (about 100 nm)
 - -> they have similar aerodynamic properties
 - -> invisible to the naked eye
- They are typically coated and often hydrated
- Respirable and not healthy
- Super-polluters are like super-spreaders

 $\mathbf{n}|\mathcal{U}$

Naked corona virus

- 10 million premature deaths from combustion particles annually (on a long term more than Covid)
- They can be filtered: Thanks to diesel particulate filters
 > 3.5 million premature deaths were saved

Particle emissions of a EURO 3 Diesel car operated at 50 km/h using a partial flow dilution tunnel for sampling

Aerosol infection vs. droplet infection

Prather et al., Science, Oktober 2020: "airborne transmission is a major pathway of transmission"

- Large droplets (>100 μm) : Fast deposition due to the domination of gravitational force
- Medium droplets between 5 and 100 μm
- Small droplets or droplet nuclei, or aerosols (< 5 μm): Responsible for airborne transmission

"Aerosols" vs. "droplets"

Figure 2: Exemplary illustration of the gravity-induced sedimentation of spherical particles with a density of 1 g/cm³ in still air

Note:

$\mathbf{n}|w$

- Even particles > 5 µm can remain suspended in the air for a long time!
- The "ballistic" droplets, which reach about 2 m distance, are > 50-100 µm.

Figure 3: Trajectories of droplets with a diameter of 200 μm and the density of water ejected at different velocities at a height of 1.70 m (based on [57])

Modelling: Droplets evaporate fast and settle slowly

Vuorinen et al., 2020, https://doi.org/10.1016/j.ssci.2020.104866

In a nutshell:

Diameter in μm	Time to settle 1.8 m
100	6 s
10	8 minutes
3	1.5 hours
1	12 hours
0.5	41 hours

Note: Particles from the respiratory tract shrink quickly in dry air (< 1 s)!

Masks reduce airborne transmission

One cough can release millions of viruses

A few hundreds viruses are believed to be enough for a Corona infection

Kimberly et al., Science 2020 https://science.sciencemag.org/content/368/6498/1422

"Flattening the curve" in 1918, California (2nd wave) Obey the laws and wear the gauze. Protect your jaws from septic paws!

 $\mathbf{n} \boldsymbol{w}$

Setup for 0.2 < D < 10 μ m

Ball-valves

Measurement of particle size distribution Palas Fidas

 $\mathbf{n} \boldsymbol{w}$

DEHS particle generator TSI 3475

Buffer volume ~50 l

Ball-valves and filter holder

Measurement of particle size distribution Palas Fidas

$\mathbf{n}|_{\mathcal{W}}$

Filtration Mechanisms:

Note:

- A particle filter does not work like a "sieve"
- Particles <0.1 µm are filtered better than 0.1-0.3 µm!
- A high filter efficiency in the range 0.1-1 µm is important!

Filtering facepiece respirators

14

Must meet strict standards

FFP1 masks also perform very well.

Beware of counterfeits!

Particle diameter [µm]

projects/evaluation-of-the-particle-filter-efficiency-of-fabrics-for-disposable-and-reusable-masks

Fabric masks (community masks)

1 μ m filtration efficiency vs. breathing resistance

Swiss Association for Standardization (SNV): Basic requirements for community masks and their testing procedures "Swiss rule" SNR 30'000:

- > 1 μ m filtration efficiency > 70% at 0.08 m/s
- Max. pressure drop 294 Pa at 0.27 m/s air permeability at a filter surface of 4.9 cm² must not exceed a maximum value of 60 Pa/cm² for a flow rate of 8 lpm (EN14683:2019+AC:2019).
- splash/drop resistance

$0.3 \ \mu m$ filtration efficiency vs. breathing resistance

Testing standards	Category	Standard/Guideline	Class	min. efficiency	max. pressure drop inhalation/exhalation	Test aerosol (median diameter)	Validity	Comments
	Filtering facepiece	EN149:2001-A1:2009 in conjunction with EN 13274-7:2019	FFP1	80%	210 Pa, at 95 l/min 300 Pa, at 160 l/min	NaCl (0,08±0,02 μm) AND paraffin (0,37±0,08 μm) at 95 l/min NaCl (0,075±0,02 μm) at 85 l/min	Europe	Test of the entire mask
			FFP2	94%	240 Pa, at 95 l/min 300 Pa, at 160 l/min			
			FFP3	99%	300 Pa, 95 l/min 300 Pa, at 160 l/min			
		GB 2626-2006	KN95	95%	350 Pa, at 85 l/min 250 Pa, at 85 l/min		China	
		42 CFR part 84	N95	95%	343,2 Pa, at 85 l/min 245,2 Pa, at 85 l/min	NaCl (0,075±0,02 μm) at 85 l/min	USA	
	iical face mask		Туре І	95%	196 Pa, at 27,2 cm/s	Water droplets > 1 µm containing bacteria at 28,3 l/min	Europe	Test of filter media samples (49 cm² for efficiency, 4,9 cm² for pressure drop)
		EN 14683	Type II	98%	196 Pa, at 27,2 cm/s			
	Med		Type IIR	98%	294 Pa, at 27,2 cm/s			
	Cloth Face Maske	CWA 17553	level 90%	90%	240 Pa, at 95 l/min 300 Pa, at 160 l/min	3±0,5 μm	Europe	Testauf set up according to existing standards, e.g. EN149 or EN14683
			level 70%	70%				
		SNR 3000	level 70%	70% at 1 μm	294 Pa at 27,2 cm/s	1±0,1 μm, at 8 cm/s	Switzerland	To be published in Q1/2021
		UNI/PdR 90.1:2020	CFC-NR	80% at MPPS	210 Pa, at 95 l/min	DEHS, Size range 0,3 - 10 µm (size resolved	Italy	not reuseable
			CFC-R					reuseable
https://www.info.gaef.de/ position-paper			CFC-BIO			measurement) b		biodegradable

The results presented are a material test, the fit of the mask was not tested.

The crucial factor is a tight fit on the face!

There are different face shapes (children, teenagers, adults, women and men). Another problem: how to deal with beard wearers where a good seal is not given?

Credit: Manuela Donati, SRF BERGMANN

Next step: Determine the <u>effective particle filtration efficiency</u> $\mathbf{n}|_{\mathcal{U}}$ of masks during exhalation (source control) and inhalation (self protection)

Final remarks

 $\mathbf{n}|_{\mathcal{U}}$

- Covid-19 is an airborne disease
- The SARS-CoV-2 virus is also present as ultrafine aerosol particle, with a long residence time in the air
- Masks, in addition to other measures, provide effective protection, provided they filter the fine particles and they fit snugly.
- We need reliable representative tests that show which masks fulfill their intended function.
- Will we cope better with the next pandemic?

Multiple Layers Improve Success

The Swiss Cheese Respiratory Pandemic Defense recognizes that no single intervention is perfect at preventing the spread of the coronavirus. Each intervention (layer) has holes.

Source: Adapted from Ian M. Mackay (virologydownunder.com) and James T. Reason. Illustration by Rose Wong

Thank you !

See also:

Position paper of the Gesellschaft für Aerosolforschung (GAeF) on understanding the role of aerosol particles in SARS-CoV-2 infection (Asbach et al., 2020) https://www.info.gaef.de/positionspapier

Sneezing tests

Tang et al. (2022) https://doi.org/10.1016/j.scib.2021.12.017

Major recent epidemics/pandemics (list is not complete) $\mathbf{n}|_{\boldsymbol{\mathcal{W}}}$

Date	Event	Location	Death toll
1918 – 1920	Spanish flu (Influenza A virus subtype H1N1)	Worldwide	>50 million
1981 – present	HIV/AIDS	Worldwide	>40 million
2002 – 2004	SARS – Severe acute respiratory syndrome (Coronavirus)	Worldwide	774
2009	Swine flu (Influenza A virus subtype H1N1)	Worldwide	284'000 (possible range 151'700 – 575'400)
2012 – present	MERS – Middle East respiratory syndrome (Coronavirus)	Worldwide	941 (as of May 2021)
2013 – 2016	Ebola virus	Africa	>11'000
2017 – 2018	Seasonal influenza	United States	61'000 (46'000 – 95'000)
2019 – present	Covid-19 pandemic SARS-CoV-2 (Coronavirus)	Worldwide	7 - 28 million (as of May 2023)

Temporal dynamics in Covid-19 transmission

 $\mathbf{n}|\boldsymbol{w}$

The dose matters....

- Experts estimate that as few as 1000 SARS-CoV2 viral particles are sufficient for an infection This may correspond to
 - one eye-rub, or
 - 100 viral particles inhaled with each breath over 10 breaths, or
 - 10 viral particles with 100 breaths
- Experts estimate that
 - A single sneeze releases about 30,000 droplets, with droplets traveling at up to 200 miles per hour. A single sneeze may contain up to 200,000,000 viruses.
 - Breathing and speaking releases aerosols and droplets: about 200 virus particles per minute.
- Fact is: most droplets are small, stay airborne and travel great distances

https://www.livescience.com/3686gross-science-cough-sneeze.html

Human lungs are aerosol generators

Let's open Pandora's Box:

the results of our mask tests

https://www.fhnw.ch/en/about-fhnw/schools/school-of-engineering/institutes/researchprojects/evaluation-of-the-particle-filter-efficiency-of-fabrics-for-disposable-and-reusable-masks

Self made fabric mask: New vs. once washed

Poor efficiency is improved by washing.

Fabric masks: Efficiency of commercially available masks $\mathbf{n}|oldsymbol{w}$

Fabric masks: Influence of washing once

Washing deteriorates the effect of good masks and the poor get a little better.

Fabric masks: influence of face velocity (0.27 m/s vs 0.08 m/s)

