

Volatility of biomass burning organic aerosol

Jun Zhang, PhD candidate, PSI, 20.06.2023

jun.zhang1@psi.ch

The importance of volatility in organic aerosols

- Primary organic aerosol (POA) emitted from biomass burning contributes a large fraction of carbonaceous aerosol.
- Volatility is an important property of aerosols because it dictates the partitioning of compounds between the gas and particle phase, thereby affecting their atmospheric fate.

Crop residue

NB: A sub category LVOC can be added between ELVOC and SVOC for low volatility organic compounds

Volatility description

- The volatility can be described by saturation concentration (C*)
- The volatility basis set has been used as a framework to represent the volatility and the oxidation state
- Different oxygenated functional groups reduce on volatility at different levels

Uncertainty of volatility estimation

- Estimating the volatility using parameterization could have large discrepancy because of the complexity of particles, e.g., chemical structure, size, viscosity...
- Volatility of POA from BB on molecular level is not available

- What affects the volatility of BBPOA from the observation?
- What is the volatility distribution of BBPOA on molecular level?

Experimental setup

EESI: extractive electrospray ionization time-of-flight mass spectrometer

AMS-HTOF

- Can be quantitative
- For non-refractory compounds
- Electron Impact Ionization: extensive fragmentation
- Difficult to retrieve molecular information

EESI-TOF

- No thermal decomposition
- Extractive Electrospray Ionization: limited fragmentation
- Can obtain molecular formula
- Only for water-soluble species here

Evaporation from SMPS, AMS, and EESI

- EESI only observes the soluble fraction (and those that bind to Na⁺), most of which evaporates before 100 C
- Particle size decrease from ~ 450 nm to 300 nm by number concentration

Evaporation data from beech wood

• In general, there is a trend of m/z dependence for compounds measured by the EESI

EESI

Evaporation data from beech wood

- The composition changes correspondingly
- At higher temperatures, the remaining compounds have more oxygen and carbon number

Influencing factors on evaporation: size

• The evaporation of levoglucosan is slower in bigger particles in the burning emission from the same fuel

Influencing factors on evaporation

Levoglucosan from monodispersed POA evaporates faster than that from monodispersed standard

Influencing factors on evaporation: non-ideal activity

- The lower the fraction of levoglucosan, the faster the particle evaporates.
- The interaction between levoglucosan and DPE is repelling, and makes levoglucosan evaporate faster in the mixed system

DPE: dipentaerythritol

• Model the evaporation of each individual compounds to get the volatility distribution from different fuels

- The larger compounds evaporated generally slower than compounds having smaller molecular weight.
- Size and chemical composition play important roles in evaporation of BBOA

Thanks the great support from the LAC group especially:

- •Tiantian Wang
- •Bogler Sophie
- •Mihnea Surdu
- •Dr. Kun Li
- •Dr. David Bell
- •Dr. Jay Slowik
- •Dr. Imad El Haddad
- •Dr. Andre Prevot

Thank you for listening!

✤This work is supported by the SNF grant MOLORG (200020_188624).