

Distribution of tire wear in the environment through atmospheric transport and deposition

Christoph Hueglin^a, Narain Ashta^a, Eric Ceglie^a, David Jaramillo-Vogel^b, Ralf Kaegi^c, Juanita Rausch^b, Ueli Schilt^a, Atiur Rahman^a

- ^a Empa, Lab. For Air Pollution / Environmental Technology
- ^b Particle Vision AG
- ^c Eawag, Department Process Engineering

Tire wear particles (TWP)

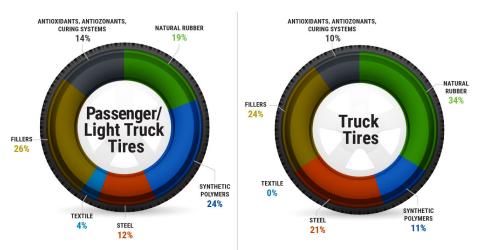
Production: passenger car: ≈ 120 mg · km⁻¹ [1]

thereof $\approx 1.1 \text{ mg} \cdot \text{km}^{-1} \text{ as PM10}^{[2]}$

heavy duty vehicle: $\approx 38 - 61 \text{ mg} \cdot \text{km}^{-1} \text{ per wheel}^{[3]}$

• In Switzerland: $\approx 13'500 \text{ tons/year}^{[4]}$

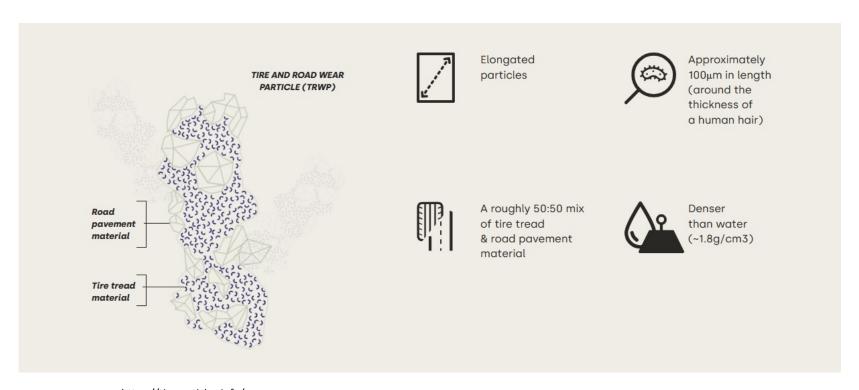
^[1] ADAC (2021), Tyre wear particles in the environment


^[2] Saladin et al., Environ Sci. Technol. (2024)

^[3] Polukarova et al., STOTEN (2024)

^[4] Empa & wst21, Reifenabrieb als grösste Quelle von Mikroplastik – Massnahmen zur Verminderung (2023)

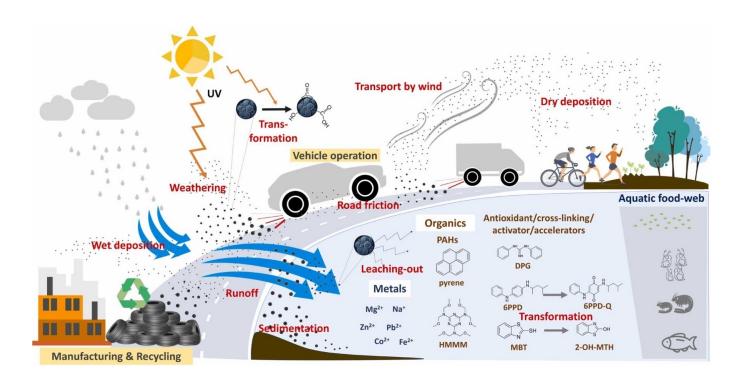
Tire wear


https://www.ustires.org/tires-101

- Tire wear consists of rubber (≈ 50 % by mass) and is one of the main forms of microplastics
- Tire wear contains a large number of potenitally toxic chemicals,
 - e.g. the antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and 6PPD quinone, which is toxic to fish [1]

^[1] Tian et al., Science (2020)

Tire and Road Wear Particles (TRWP)



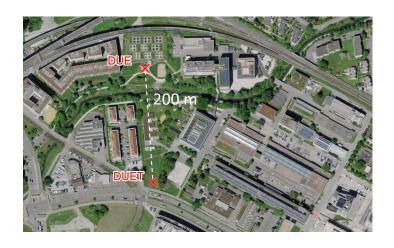
https://tireparticles.info/

Tire wear in the environment

Yogandham et al., J. Hazardous Materials (2024)

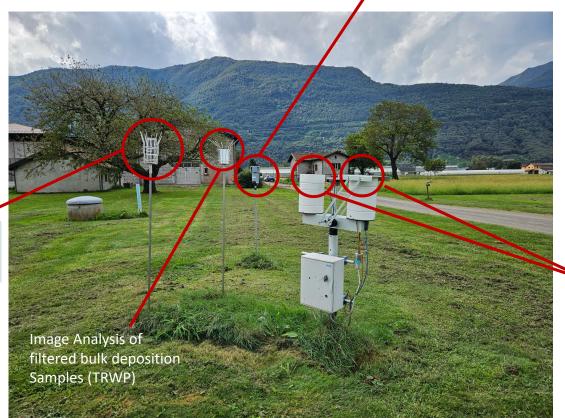
Research question

What is the role of the atmosphere in the transport and distribution of tire wear (and other types of microplastics) in the environment?


Disclaimer: No focus on air quality, we are interested in the mass flow of tire wear into the environment as a basis for risk assessment

One year measurement campaign

- Selected NABEL sites
- Urban, ZUE (Zürich-Kaserne)
- Suburban, DUE (Dübendorf-Empa)
- Rural, PAY & MAG (Payerne & Magadino-Cadenazzo)
- Remote, CHA (Chaumont)
- Traffic, DUET (Dübendorf-Überlandstrasse, 20'000 veh/day)



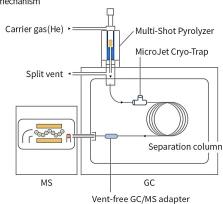
- Sampling frequency: every 4 weeks
- Sampling duration: 1 year (May 2024 May 2025)

Sampling and analytics

Single Particle Analysis (SEM/EDX, Particle Vision) Dry deposition TRWP, 1-80μm, Rausch et al., STOTEN 2022

Analysis of rubber polymer fragments (Pyrolysis GC-MS). Bulk deposition (TWP < 400 μ m)

Image Analysis of filtered wet & dry deposition (TRWP 15-200 μm).


Analysis of microplastics using chemical imaging (FPA- μ -FTIR)

Magadino-Cadenazzo (MAG)

Analysis of tire wear particles using Pyrolysis GC-MS

Pyrolyzer operation mechanism

•	Thermal	decomposition	of rubber	polymers at	670°C
---	---------	---------------	-----------	-------------	-------

- Gas chromatographic separation of decomposition products
- Quantification of pyrolysis fragments with MS

synthetic	SBR: styrene- butadiene rubber
lys	BR: butadiene rubber
natural	NR: natural rubber

Polymer Formula	Dimer		
$ \begin{bmatrix} (CH_2-CH=CH_2)_{\overline{X}}(CH-CH_2)_{\overline{Y}} \end{bmatrix}_{\overline{\Omega}} $ SBR	Vinylcyclohexene		
	vinylcyclohexene		
CH ₃ CH ₂ -C=CH-CH ₂	e u u u u u u u u u u u u u u u u u u u		

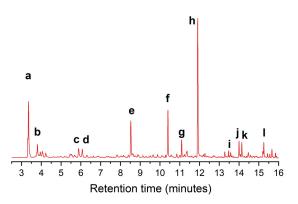
- ISO/TS 20593:2017 & ISO/TS 21396:2017
- Disadvantage: Assumption of known and constant SBR, BR and NR content in tires
- SBR, BR and NR content varies greatly between brands and models, which leads to large errors in the determination of tire wear (Rauert et al., EST 2023)

Collection of "reference" material

Collection of tire tread from used tires

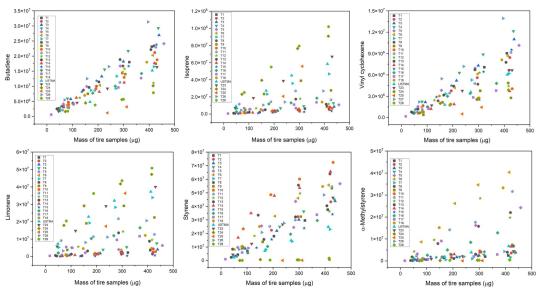
Cryo-milling

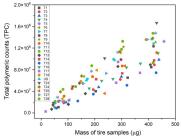
Milled tire wear particles (TWP) (below 400 micron)



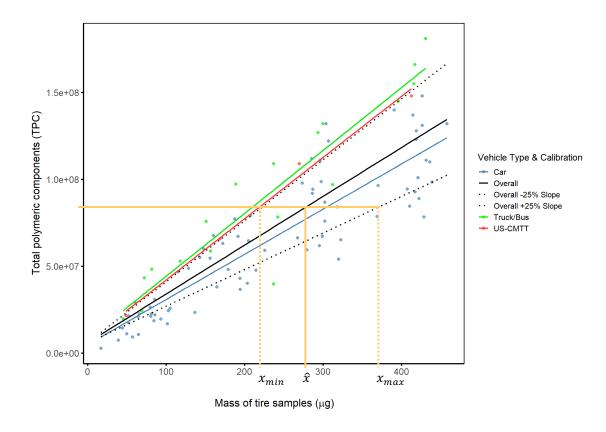
- Tire tread from 18 used passenger car tires and 5 used truck/bus tires collected
- In addition Cryo-milled Tire Tread (CMTT) as provided by the US Tire Manufacturers Association

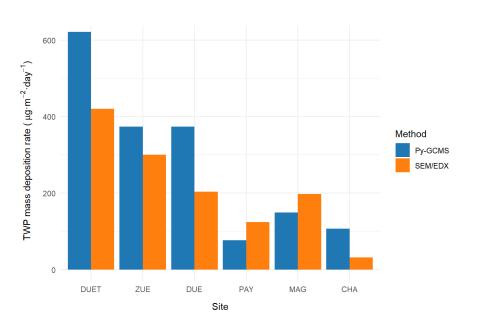
Analysis of tire wear particles using pyrolysis GC-MS




Typical pyrogram of a cryo-milled tire sample

- a. Butadieneb. Pentadiene (Isoprene)
 - Cyclohexadiene/Hexatriene
 - Benzene
 - Toluene
 - 4-Vinylcyclohexene (VCH)


- g. Ethyl benzene/Xylene
- . Styrene
- Isolimonene
- Aniline
- k. a-Methylstyrene
- Limonene (dipentene)


Pyrolysis GC-MS method calibration

Mean calculated deposition rates (June – Oct. 2024)

TWP deposition in μg/m² day

			Image Analysis (YOLO)		
	Py-GCMS (total)	SEM/EDX (dry)	total	dry	wet
DUET	621 (497 - 828)	420			
ZUE	373 (298-497)	300	382	311	71
DUE	374 (299-499)	203	203	163	40
PAY	77 (62 - 103)	125	68	52	16
MAG	149 (119 - 199)	198	80	54	26
CHA	107 (86 - 143)	32	32	23	9

Mean atmospheric deposition of TWP (June-Oct 2024, Py-GCMS)

Estimation of total atmopheric TWP deposition across Switzerland

Total deposition as based on Py-GCMS and calculated from June-Oct 2024 samples

CH - Arealstatistik

https://www.bfs.admin.ch/bfs/de/home/statistiken/raum-umwelt/bodennutzung-bedeckung.html

Land use		km²	Representation	TWP (μg/m²yr)	TWP (t/yr)	Range (t/yr)
Settlement and road areas						
	Road areas	868	DUET	621	197	(157 – 246)
	Rest	2403	DUE, ZUE	373.5	328	(262 – 409)
Agricultural areas		14525	CHA, PAY, MAG	111	588	(471 – 736)
Wooded areas		13134	CHA, PAY, MAG	111	532	(426 - 665)
Unproductive areas		10361	CHA	107	405	(324 - 506)
Total		41291			2050	(1640 – 2562)
					Work	
						in progress
						0,622

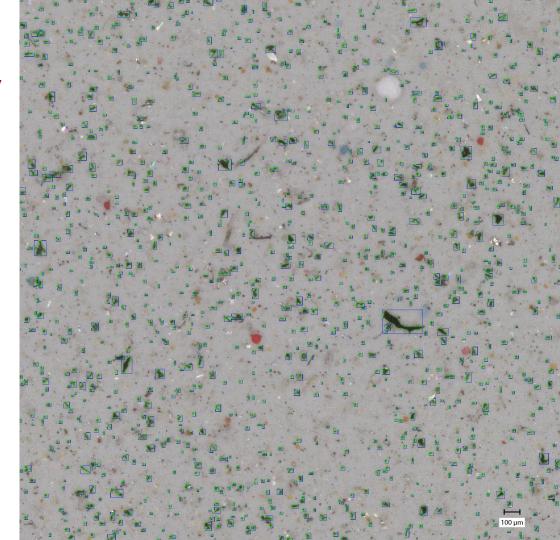
Summary

- A method for the quantification of TWP in atmospheric deposition samples based on Py-GCMS was developed
- Results are in good agreement with independent methods (SEM/EDX and image analysis)
- Mean bulk TWP deposition rate $\approx 100-600 \,\mu\text{g/m}^2$ day (June-October 2024)
- For comparison: Mean total particle deposition rate = 52 mg/m² day (NABEL 2024)
 - → Share of TWP in total particle deposition is ~ 0.2-1%
- Based on 5 months of data, **preliminary** estimation of annual atmospheric deposition of TWP in Switzerland is $\approx 2'000$ tons/year (or $\approx 15\%$ of annual production)

Thank you!

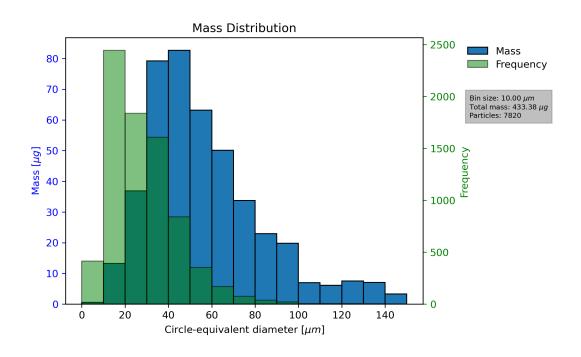
Acknowledgements:

- NABEL-Team (BAFU/Empa)
- ASTRA (Projekt TRU_20_00E_01 ATMO)
- BAFU for funding MP project



Detection of suspect tire wear particles (TWP) in dry and wet deposition samples from partner project on microplastics

Two methods


- Image analysis using color threshold (HSV)
- Object detection in images (YOLO)

Duebendorf, Series 12 (August 2024), dry deposition (detail of Anodisc filter)

Number and Mass size distributions of TWP (image analysis, wet deposition sample from Zurich)

