

Catalytic oxidation of CO, VOC and PM in O₂-rich exhaust of small scale fireplaces

$$O_{2}(g) + 2 * \frac{r_{1}}{r_{2}} \quad 2 O * CO(g) + O * \frac{r_{3}}{r_{4}} \quad CO_{2} * \quad CO_{2}(g) + * \frac{r_{5}}{r_{6}} \quad CO_{2}(g) + * \frac{r_{5}$$

Markus Ulbricht, Sven Kureti

18.06.2025

Emissions from small scale fireplaces

www.obi.at

Biomass is CO₂-neutral fuel and contributes to defossilization

Issue: emission of pollutants

Fuel	Emissions in kg TJ ⁻¹		
	CO	PM	VOC
Wood	2260	90	196
Gas	13	0.03	2.9
Oil	12	0.85	1.5

Source: Federal Environmental Agency, Germany, 2016

For new small scale fireplaces
 (< 50 kW), oxidation catalysts
 based on noble metals available
 → CO/VOC removal

In Germany 11.7 million small
scale fireplaces exist → retrofitting with catalysts useful

Non-noble metal catalysts for oxidation of CO, VOC and PM

- Based on previous studies on oxidation of pollutants Fe-Mn catalysts used
- Fe-Mn mixed oxide samples with different Fe fractions Fe (x=0...1) prepared by sol-gel method, calcination at 650°C
- Catalytic tests made in laboratory using TPO with catalyst granules

- TPO conditions
 - 200 mg catalyst, 500 ml/min total flow (191,000...273,000 h⁻¹)
 - 1000 ppm CO, 500 ppm C₃H₆, 250 ppm toluene, 10 vol% H₂O, 10 vol% O₂
 - Blend with 10 mg soot, 10 vol% H₂O, 10 vol% O₂

Toluene oxidation performance

Catalytic performance assessed based on light-off temperature T₁₀

Toluene conversion on Fe_2O_3 (x=1)

Conditions:

1000 ppm CO

500 ppm C₃H₆

250 ppm toluene

10 vol% H₂O

10 vol% O₂

Light-off temperatures of catalysts

→ Fe-rich catalysts (x=0.85 and 0.9) are most active

Structure-activity relation in toluene oxidation

• Phase distribution and α -Fe₂O₃ crystallite size of the catalysts (XRD / Rietveld)

For most active catalysts (x=0.85/0.9) the solubility of Mn is low

→ MnO_x entities primarily seggregated

Active catalysts reveal small α -Fe₂O₃ crystallites

Soot oxidation performance of Fe-Mn oxide catalyst with Fe proportion of x=0.9

- → Fe-Mn catalyst is also active in soot oxidation
- → Light-off tremperature below 300°C

CO/VOC/PM oxidation performance Comparison with Pt/Pd reference

0.59Pt/4.9Pd/Al₂O₃

CO/VOC oxidation

Fe-Mn mixed oxides:

- Simultaneous oxidation of CO, VOC and PM with light-off temperatures < 300°C
- High activity of Fe-rich catalysts is due to dissolved and/or coexisting MnO_x
- Low-cost and harmless catalyst for retrofitting and introduction into new small scale fireplaces
- Transfer to honeycomb substrates and assessment in real exhaust gas required

We gratefully acknowledge the financial support by SAB within SelbKat project.

This project is co-financed from tax revenues on the basis of the budget adopted by the Saxon State Parliament.

Thank you for your attention!

