Particle Number Emissions from In-Use Transit Buses with Advanced SCR Systems

David Kittelson and William Northrop – University of Minnesota
Andrew Kotz – National Renewable Energy Laboratory

22. ETH Conference on Combustion Generated Nanoparticles
Zurich, June 19th – 21st 2018
On-road transit bus emissions

- This is an extension of a project comparing NOx emissions of SCR equipped 2013 and 2015 MY (Model Year) buses
- Increased PM and especially PN have been reported with SCR plus DPF compared to DPF alone*
 - Suggest PN are semi-volatile but still detected by PMP method
 - Suggest PN increases with urea dosing – increasing ammonia to NOx ratio (ANR)
- This motivated us to do preliminary study of on-road PN measurements. That work is the topic of this presentation

Understanding on-road NOx and PN emissions

- 2013 engine class met certification, but had high emissions under real-world driving conditions
- Known disconnect with between certification and real-world
- 2015 MY bus had substantially lower real world NOx emissions using model based control with average ANR > 1
- **What about PN?**
 - 2015 vs 2013 MY
 - Role of ANR

Data Presented at 2016 CRC Conference

![Graph showing NOx emissions comparison between 2013 MY and 2015 MY buses for different driving conditions.](image-url)
Test Vehicles

- 40’ GILLIG Buses
 - 8.9L Cummins ISL
 - 2013 certified
 - Emission control system consisting of DOC, DPF, SCR, and NH₃ slip catalyst

- Main differences between 2013 and 2015 MY emission control system, for 2015:
 - Remove NH₃ sensor
 - Model-based dosing
Instruments and Data Acquisition

- **Data Acquisition**
 - NI cRIO controllers
 - J1939 CAN interface – NO\textsubscript{X} Sensors
 - GPS location
 - 1Hz data collection
 - Wireless data streaming
 - TSI NPET 3795
 - Designed for Swiss heavy-duty IM program
 - Not PMP complaint
 - Measures solid particle number greater than ~ 20 nm
Cycle Averaged NOx Comparison

- Results by Route
- 2015 MY compared to 2013 MY
 - No change in engine out NOx
 - No change in average power
 - 80% NOx Reduction
 - 25% Dosing Increase
 - Average ANR >1
Engine Out vs Tailpipe NOX

- NOX Conversion: Tailpipe vs Engine Out Concentration
 - 2015MY
 - Near Constant conversion > 90%

- ANR
 - 2013MY 5 bands
 - 2015MY 1 large band closer to stoichiometric ANR of 1.0
PN Test Conditions

2015 MY Testing
- November 18th, 2015
- Temperature: 48\textdegree F

2013 MY Average PN
- November 17th, 2015
- Temperature: 52\textdegree F

\textbf{Low Speed Route}:
- Speed: 17mph
- KI: 2.4 m-1

\textbf{High Speed Route}:
- Speed: 28mph
- KI: 0.6 m-1

\textbf{Kinetic Intensity, }\text{KI} = \frac{\text{Characteristic Acceleration}}{\text{Aerodynamic Velocity}} = \frac{a}{v^2}
Particle Number Measurements

Post SCR Particle Count: Influence of ANR and power

![Graph showing particle number measurements vs. ammonia to NOx ratio and brake power.](image-url)

University of Minnesota
Density Plots

- Multiple formation modes
 - No clear trend with ANR
 - Increase with power

- 2015 MY Average PN
 - 1.27×10^{11} particles/kW-hr

- 2013 MY Average PN
 - 1.34×10^{10} particles/kW-hr

- Why are 2015 emissions higher?
Regen Event

- 2015 MY Average PN
 - 1.27×10^{11} particles/kW-hr
- 2015 Regen Removed
 - 7.81×10^{10} particles/kW-hr
- 2013 MY Average PN
 - 1.34×10^{10} particles/kW-hr
- All values well below PMP heavy-duty standard
 - 6×10^{11} particles/kW-hr
- Strong influence of regeneration
 - Higher emissions continue after regeneration until soot cake develops
 - Somewhat higher emission even in absence of regeneration
Expectations – VPR (CS) should remove semi-volatile particles

- On regeneration
 - Release of stored *semi-volatile* material
 - Sulfuric acid, ammonium sulfate
 - Heavy hydrocarbons adsorbed on soot
 - Removal of soot cake, *solid particle release*
 - Some penetration of fragments of soot cake
 - Increased fresh soot penetration as soot cake is reestablished
 - Particles related to urea dosing
 - Incomplete evaporation / conversion leading to urea decomposition products, *“solid” or semi-volatile*
 - At ANR > 1 ammonia penetration leading to ammonium sulfate, ammonium nitrate, ..should be *semi-volatile*
Issues

• Nature of SCR related particles
 – Urea, ammonia related compounds “solid” or semi-volatile
 • TGA shows some urea related compounds less volatile than tetracontane
 • TGA may be poor predictor of behavior of suspended particles
 • Was PMP method intended to classify such particles as “solid”?
• Removal of semi-volatile material by VPR in this case catalytic stripper
 – Meets tetracontane removal specifications
 – Are “solid” particles during regeneration real or VPR overload*
• It would be useful to compare PN emissions from urea spray and gaseous ammonia SCR

Swanson et al., Journal of Aerosol Science, Volume 41, Issue 12, Pages 1113-1122.
Summary

• Changes in SCR system between 2013 and 2015 MY led to more than 80% reduction in on-road NOx emissions
 – FTP certification levels essentially unchanged
 – Great improvement in real driving emissions

• However, these changes were associated with significantly higher PN emissions for 2015 MY bus
 – Not designed to meet PMP standard, but still well below standard
 – Increased ANR may play a role but decrease in emissions with ANR unexpected
 – Regeneration and associated higher emissions as soot cake redevelops main difference between 2015 and 2013 results but difference remains without regeneration

• This was preliminary study – additional work needed
Thank You

Questions?
Drive Cycles – Fast Route

Cycle Particles: $4.38 \times 10^{10} \text{#/kW-hr}$

2015 MY - Fast Route

Cycle Particles: $9.63 \times 10^{10} \text{#/kW-hr}$

2013 MY - Fast Route

University of Minnesota
Drive Cycles – Slow Route

2015 MY - Slow Route

Cycle Particles: 1.42×10^{10} #/kW-hr

107.5 kW

2013 MY - Slow Route

Cycle Particles: 1.00×10^{10} #/kW-hr

122.1 kW